Alteromonas sp. strain O-7 secretes several proteins in response to chitin induction. We have found that one of these proteins, designated AprIV, is a novel chitin-binding protease involved in chitinolytic activity. The gene encoding AprIV (aprIV) was cloned in Escherichia coli. DNA sequencing analysis revealed that the open reading frame of aprIV encoded a protein of 547 amino acids with a calculated molecular mass of 57,104 Da. AprIV is a modular enzyme consisting of five domains: the signal sequence, the N-terminal proregion, the family A subtilase region, the polycystic kidney disease domain (PkdD), and the chitin-binding domain type 3 (ChtBD3). Expression plasmids coding for PkdD or both PkdD and ChtBD (PkdD-ChtBD) were constructed. The PkdD-ChtBD but not PkdD exhibited strong binding to alpha-chitin and beta-chitin. Western and Northern analyses demonstrated that aprIV was induced in the presence of N-acetylglucosamine, N-acetylchitobiose, or chitin. Native AprIV was purified to homogeneity from Alteromonas sp. strain O-7 and characterized. The molecular mass of mature AprIV was estimated to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of AprIV were pH 11.5 and 35 degrees C, respectively, and even at 10 degrees C the enzyme showed 25% of the maximum activity. Pretreatment of native chitin with AprIV significantly promoted chitinase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134925PMC
http://dx.doi.org/10.1128/JB.184.7.1865-1872.2002DOI Listing

Publication Analysis

Top Keywords

alteromonas strain
12
strain o-7
12
apriv
10
gene encoding
8
novel chitin-binding
8
chitin-binding protease
8
molecular mass
8
molecular analysis
4
analysis gene
4
encoding novel
4

Similar Publications

Article Synopsis
  • The study examines how a certain type of microbe, when exposed to periods of darkness, can develop tolerance through co-cultivation with a heterotrophic microbe.
  • Results show that the dark-tolerant microbes became larger, had less chlorophyll, and shifted from photosynthesis to respiration, while the heterotroph adapted by using more organic acids instead of sugars.
  • The research highlights the enhanced metabolic exchange between the two microbes, indicating a strong coupling that helps them survive in low-light conditions.
View Article and Find Full Text PDF

Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:

Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL).

View Article and Find Full Text PDF

Copepods are small crustaceans that live in microorganism-rich aquatic environments and provide a key supply of live food for fish and shellfish larviculture. To better understand the host-pathogen interaction between the copepod and Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VP), the comparative transcriptome and microbiome analyses were conducted in copepod Apocyclops royi-TH following VP infection. Transcriptome analysis identified a total of 836 differentially expressed genes, with 275 upregulated and 561 downregulated genes.

View Article and Find Full Text PDF

(isolate SD1D, with 98.5% sequence similarity to DMS 21967 KOPRI 20902) is a marine bacterium that was isolated from ballast tank fluids as part of a biofilm study in 2014. Our previous work indicated that although this strain produced no detectable biofilm, it was the only isolate to produce -acyl homoserine lactones (AHLs) in assays using the broad-range reporter strain, KYC55.

View Article and Find Full Text PDF

Genomic analysis of Alteromonas sp. M12 isolated from the Mariana Trench reveals its role in dimethylsulfoniopropionate cycling.

Mar Genomics

August 2024

MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China. Electronic address:

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio‑sulfur transferred from ocean to atmosphere. Alteromonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!