Multiple drug resistance is a significant problem in small-cell lung cancer (SCLC). Artemisinin (ART) is a natural product used to treat drug-resistant malaria. The drug is effective because the Fe2+ present in infected erythrocytes acts non-enzymatically to convert ART to toxic products. We tested the effects of ART on drug-sensitive (H69) and multi-drug-resistant (H69VP) SCLC cells, pretreated with transferrin (TF) to increase the intracellular Fe2+ level. Antibody staining followed by flow cytometry analysis showed twice the level of TF receptors on the H69VP as compared to the H69 cells. Low doses of ART were cytotoxic to SCLC cells. The cytotoxicity of ART for H69VP cells (IC50=24 nM) was ten-fold lower than for H69 cells (IC50=2.3 nM), indicating that ART is part of the drug resistance phenotype. Pretreatment of H69 cells with 220-880 nM TF did not alter the IC50 for ART. However, in the ART-resistant H69VP cells, pretreatment with TF lowered the ART IC50 to near drug-sensitive levels (IC50=5.4 nM after 4 h pretreatment with 880 nM TF). Desferrioxamine (5 microM) inhibited the effect of TF on the IC50 for ART in drug-resistant cells but did not have an effect on ART cytotoxicity in drug-sensitive cells. DNA fragmentation as measured by ELISA occurred within ART-treated cells, with kinetics indicating apoptosis rather than necrosis. This was confirmed by TUNEL staining. These data indicate the potential use of ART and TF in drug-resistant SCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3835(02)00005-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!