A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. | LitMetric

Caveolae are vesicular invaginations of the plasma membrane. Their formation is strictly dependent on the expression of the caveolin coat proteins. During transit to the plasma membrane, approximately 15 monomers of caveolin-1 assemble into a multivalent homo-oligomer. Caveolae are most likely generated through the subsequent interaction of these caveolin homo-oligomers with one another, with sphingolipids, and with cholesterol. Membrane association of caveolin-1 is critical to this process and is facilitated by an atypical N-terminal membrane attachment domain (residues 82-101), termed N-MAD. To better understand the membrane attachment function of N-MAD, we performed a detailed mutational analysis of the 20 amino acid N-MAD peptide sequence fused to the C-terminus of the soluble reporter green fluorescent protein (GFP). Removal of the distal six residues (KYWFYR) within N-MAD prevents membrane attachment in cells as assessed by hypotonic lysis, detergent solubility, carbonate extraction, and fluorescence microscopy. These six residues (KYWFYR) are sufficient to confer membrane attachment to GFP, an otherwise soluble protein. Both the central aromatic and flanking basic residues in this sequence are required for membrane attachment, as the sequence YWFY does not confer membrane affinity to GFP. Although the KYWFYR sequence within N-MAD facilitates membrane association, we show that the entire N-MAD sequence is required for targeting to lipid rafts/caveolae.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0120751DOI Listing

Publication Analysis

Top Keywords

membrane attachment
24
membrane
11
mutational analysis
8
attachment sequence
8
plasma membrane
8
membrane association
8
residues kywfyr
8
confer membrane
8
sequence required
8
attachment
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!