The protein product of the Methanococcus jannaschii MJ1256 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to be involved in coenzyme F(420) biosynthesis. The protein catalyzes the transfer of the 2-phospholactate moiety from lactyl (2) diphospho-(5')guanosine (LPPG) to 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) with the formation of the L-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) and GMP. On the basis of the reaction catalyzed, the enzyme is named LPPG:Fo 2-phospho-L-lactate transferase. Since the reaction is the fourth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofD, the product of the cofD gene. The transferase requires Mg(2+) for activity, and the catalysis does not appear to proceed via a covalent intermediate. To a lesser extent CofD also catalyzes a number of additional reactions that include the formation of Fo-P, when the enzyme is incubated with Fo and GDP, GTP, pyrophosphate, or tripolyphosphate, and the hydrolysis of F(420)-0 to Fo. All of these side reactions can be rationalized as occurring by a common mechanism. CofD has no recognized sequence similarity to any previously characterized enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi011937v | DOI Listing |
Nat Commun
October 2024
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. Electronic address:
J Vis Exp
September 2024
School of Life Sciences, University of Hawai'i at Mānoa;
Many bacteria build alternative ribosomes in Zn-limiting growth conditions by replacing Zn-binding ribosomal proteins with Zn-independent paralogs. Defining a system to study these alternative ribosomes has proven difficult because Zn contamination in the laboratory is common. To address this issue, chelating agents are sometimes added to growth media, but this approach convolutes the biological response to gradual Znlimitation and is associated with ribosome hibernation.
View Article and Find Full Text PDFWater Sci Technol
August 2024
Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China.
The study investigates the effect of the oxidant calcium oxide (CaO) on the codigestion of excess sludge (ES) and plant waste (PW) under mesophilic anaerobic conditions to enhance methane production. The findings indicate that CaO significantly elevated methane yield in the codigestion system, with an optimum CaO addition of 6% resulting in a maximum methane production of 461 mL/g volatile solids, which is approximately 1.3 times that of the control group.
View Article and Find Full Text PDFBioresour Technol
November 2024
South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China. Electronic address:
Nano-bubble water (NBW) was applied to anaerobic digestion (AD) to alleviate volatile fatty acids (VFAs) inhibition, improve the buffering capacity and CH production in this work. Results indicated that NBW accelerated the consumption of VFAs and prevented inhibition due to VFAs accumulation. Additionally, NBW facilitated a rapid increase in partial alkalinity (PA) and total alkalinity (TA) as well as a corresponding rapid decrease in intermediate alkalinity (IA)/PA and VFA/TA, thereby improving buffering capacity and alleviating VFAs inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!