Fibrillins are large structural macromolecules that are components of connective tissue microfibrils. Fibrillin microfibrils have been found in association with basement membranes, where microfibrils appear to insert directly into the lamina densa. It is unknown whether fibrillins are limited to these sites of microfibril insertion or are present throughout the lamina densa. In this study, electron microscopic immunolocalization demonstrated the presence of fibrillin-1 throughout the lamina densa in the dermal-- epidermal junction. In order to investigate whether fibrillin microfibrils might be present in the lamina densa, epithelial cell cultures (WISH, HaCaT, and primary keratinocytes) were analyzed by immunofluorescence, immunoblotting, and extraction of microfibrils followed by rotary shadowing electron microscopy and compared to mesenchymal cell cultures (dermal fibroblasts and MG63 osteosarcoma). In contrast to mesenchymal cells, which elaborate a fibrillin fibril network, epithelial cells primarily deposit fibrillin into the extracellular matrix in a nonfibrillar form. Coculture experiments using human epithelial cells and mouse fibroblasts implicated the cells themselves in the assembly of fibrillin. The importance of the cell in this process was further underscored by novel data demonstrating that keratinocytes selectively secrete fibrillin-1 into the matrix and not into the medium and can differentiate between fibrillin-1 and fibrillin-2.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0022-202x.2001.01588.xDOI Listing

Publication Analysis

Top Keywords

lamina densa
16
epithelial cell
8
fibrillin microfibrils
8
cell cultures
8
epithelial cells
8
microfibrils
5
fibrillin
5
assembly epithelial
4
cell
4
cell fibrillins
4

Similar Publications

Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

Adv Sci (Weinh)

January 2025

LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.

Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.

View Article and Find Full Text PDF

Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder characterized by basement membrane disruption, which plays a crucial role in its pathogenesis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the degradation of the basement membrane. The specific MMPs secreted by keratinocytes in OLP lesions and relevant regulatory mechanisms are not fully understood.

View Article and Find Full Text PDF

Background: Autoimmune bullous disorder (AIBD) is a diverse group of blistering dermatoses that affects the skin and mucous membrane, characterized by the formation of autoantibodies against the desmosomal glycoproteins and adhesion molecular components of the basement membrane zone. Various immunoassay techniques for serological diagnosis are Direct Immunofluorescence (DIF), Indirect Immunofluorescence (IIF), Enzyme Linked Immunosorbent Assay (ELISA) and immunoblotting. Quantitative ELISA titer can also be used to monitor the disease activity and response to treatment.

View Article and Find Full Text PDF

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!