To investigate functional heterogeneity within the amygdala in appetitive conditioned instrumental behaviours, neuronal activity was recorded from the amygdala of behaving rats during learning and discrimination of conditioned sensory stimuli associated with or without reinforcement [sucrose solution, intracranial self-stimulation (ICSS)]. Sensory stimuli included auditory (tone), visual (light) and configural (simultaneous presentation of tone and light) stimuli. The rat was trained to lick a spout protruded close to its mouth just after a conditioned sensory stimulus to obtain a reward. Of the 609 neurons recorded from the amygdala and amygdalostriatal transition area, 154 responded to one or more sensory stimuli. The 62 amygdalar neurons responded strongly to certain conditioned sensory stimuli associated with rewards. Of these 62 neurons, 45 were tested with the extinction trials. Responses of 31 neurons to conditioned stimuli were finally extinguished, and those of the remaining 14 were not extinguished. Furthermore, responses of 26 of these 31 neurons resumed in the relearning trials (plastic neurons), suggesting that these sensory responses were associative rather than just responses to physical properties of the stimuli. These plastic neurons were located mainly in the basolateral nucleus of the amygdala, and responses of the plastic neurons were correlated with behavioural responses. These results suggest that the basolateral nucleus is crucial in associative learning between sensory information and affective significance for behavioural outputs in appetitive conditioned instrumental behaviours.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.01889.xDOI Listing

Publication Analysis

Top Keywords

sensory stimuli
16
conditioned sensory
12
plastic neurons
12
appetitive conditioned
8
conditioned instrumental
8
instrumental behaviours
8
recorded amygdala
8
stimuli associated
8
neurons
8
responses neurons
8

Similar Publications

Electroencephalogram (EEG) during pinprick stimulation has the potential to unveil neural mechanisms underlying sensorimotor impairments post-stroke. A proof-of-concept study explored event-related peak pinprick amplitude and oscillatory responses in healthy controls and in people with acute and subuacute motor and sensorimotor stroke, their relationship, and to what extent EEG somatosensory responses can predict sensorimotor impairment. In this study, 26 individuals participated, 10 people with an acute and early subacute sensorimotor stroke, 6 people with an acute and early subacute motor stroke, and 10 age-matched controls.

View Article and Find Full Text PDF

Physiological Responses to Aversive and Non-aversive Audiovisual, Audio, and Visual Stimuli.

Biol Psychol

January 2025

Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA. Electronic address:

We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli.

View Article and Find Full Text PDF

Hemispheric difference of adaptation lifetime in human auditory cortex measured with MEG.

Hear Res

December 2024

Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany; Department of Psychology, Lancaster University, Lancaster, UK.

Adaptation is the attenuation of a neuronal response when a stimulus is repeatedly presented. The phenomenon has been linked to sensory memory, but its exact neuronal mechanisms are under debate. One defining feature of adaptation is its lifetime, that is, the timespan over which the attenuating effect of previous stimulation persists.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!