Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis.

Eur J Clin Invest

Department of Internal Medicine and Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.

Published: March 2002

Background: The iron chelators deferoxamine (DF) and deferiprone (CP20) have been shown to inhibit human immunodeficiency virus type 1 (HIV-1) replication in human peripheral blood lymphocytes (PBL). The orally active bidentate chelators CP502 and CP511, which also belong to the 3-hydroxypyridin-4-one family, but with higher affinities for iron than CP20, were monitored for their antiviral properties by checking for p24 antigen production and nuclear factor (NF)-kappaB activation, and their ability to induce apoptosis.

Materials And Methods: Human PBLs were isolated from HIV-1 seronegative donors and subsequently infected with HIV-1(Ba-L) for 2 h. After 5 days' incubation, HIV-1 replication was monitored by p24 antigen production. Cellular proliferation as well as caspase-3 activity were monitored in uninfected cells after a period of 5 days and after 1 day infection, respectively. NF-kappaB activity was also monitored by electromobility shift assays (EMSA) performed on nuclear extracts of Jurkat cells treated with the different chelators for 4 h.

Results: CP502 and CP511 decrease HIV-1 replication by decreasing cellular proliferation in a similar manner to DF and CP20. CP511 seemed to be more potent than either CP502 or CP20. Due to the reduction in cellular proliferation, there was an increase in caspase-3 activity after 24 h incubation. NF-kappaB activity was not affected by any of the chelators.

Conclusions: Iron chelators with high affinities for iron, which are under development for the treatment of iron overload, could contribute to the reduction of HIV-1 replication in infected patients by cellular proliferation inhibition rather than by a direct antiviral action.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2362.2002.0320s1091.xDOI Listing

Publication Analysis

Top Keywords

hiv-1 replication
16
cellular proliferation
16
iron chelators
12
cp502 cp511
12
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
chelators cp502
8
proliferation inhibition
8
affinities iron
8

Similar Publications

Designing and employing enzyme inhibitors against viral enzymes is one of the innovative and efficient approaches to treating viral diseases. These inhibitors can disrupt the viral replication cycle by deactivating vital enzymes, thereby curbing the spread of viral infections by reducing their population. So far, inhibitors have been designed, validated, and introduced for these enzymes.

View Article and Find Full Text PDF

Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!