Biomonitoring of polycyclic aromatic compounds in the urine of mining workers occupationally exposed to diesel exhaust.

Int J Hyg Environ Health

Biochemisches Institut für Umweltcarcinogene (BIU), Prof. Dr. Gernot Grimmer-Stiftung, Lurup 4, D-22927 Grosshansdorf, Germany.

Published: February 2002

Diesel exhaust is considered a probable human carcinogen by the IARC. Biomonitoring of workers occupationally exposed to diesel exhaust was performed to determine their internal burden of diesel associated aromatic compounds. Personal air sampling also allowed to determine the exposure of the miners at their work place towards several polycyclic aromatic hydrocarbons (PAH) and nitro-arenes, the latter of which are thought to be specific constituents of diesel exhaust. For biomonitoring the urine of 18 underground salt miners was collected during and after their shift for 24-hours. half of the 18 miners were smokers. The urinary levels of 1-hydroxypyrene and hydroxylated phenanthrene metabolites were determined as biomarkers of PAH exposure, whereas urinary levels of some aromatic amines were chosen to monitor exposure towards specific nitro-arenes from diesel exhaust like 1-nitropyrene and 3-nitrobenzanthrone and to monitor the human burden by these compounds from inhaled cigarette smoke. Non-smoking workers exposed to diesel exhaust excrete an average level of about 4 micrograms phenanthrene metabolites, whereas the urinary levels in smokers were up to 3-fold higher. In summary the results indicate that (i) diesel exposure led to an increase of PAH metabolism in the workers examined, most probably by an induction of cytochrome P450 (ii) smokers could be identified in accordance with earlier studies by their increased ratio of phenanthrene metabolites derived from 1,2- and 3,4-oxidation and their higher amounts of excreted 1-naphthylamine, and (iii) the excreted amounts of aromatic amines found as metabolites of the nitro-arenes were about 5- to 10-fold higher as one might expect from the levels determined by personal air sampling at the workplace of the individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1078/1438-4639-00116DOI Listing

Publication Analysis

Top Keywords

diesel exhaust
24
exposed diesel
12
urinary levels
12
phenanthrene metabolites
12
polycyclic aromatic
8
aromatic compounds
8
workers occupationally
8
occupationally exposed
8
diesel
8
personal air
8

Similar Publications

Evaluating low NO hydrogen engines designed for off-road and construction applications.

Environ Sci Process Impacts

January 2025

Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York, YO10 5DD, UK.

Hydrogen internal combustion engines offer a near-term decarbonisation pathway for hard to electrify sectors such as non-road mobile machinery (NRMM). However, few hydrogen-specific engines have ever been developed with the twin-goals of maximising low carbon energy efficiency and delivering air quality co-benefits. We present analyses of dynamometer-derived nitrogen oxides (NO) tailpipe emissions from four variants of a ∼55 kW four-cylinder port fuelled injection spark ignition hydrogen internal combustion engine (H2ICE) suitable for a range of uses within the NRMM industry.

View Article and Find Full Text PDF

Emerging evidence for the impact of Electric Vehicle sales on childhood asthma: Can ZEV mandates help?

Environ Res

January 2025

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; School of the Environment, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Growing epidemiological studies indicate a significant fraction of asthma cases can be attributed to traffic-related air pollution (TRAP). Zero emission vehicle (ZEV) mandates-one of the most forward-looking climate policies in the United States-aim to reduce TRAP by mandating automakers to sell a certain fraction of Electric Vehicles (EVs) annually; however, their public health benefits are largely unknown. We conduct the screening step of the health impact assessment (HIA) of real-world EV sales to estimate the impact of ZEV mandates in reducing childhood asthma.

View Article and Find Full Text PDF

Laboratory measurement and machine learning-based analysis of driving factors for brake wear particle emissions from light-duty electric vehicles and heavy-duty vehicles.

J Hazard Mater

January 2025

Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.

This study investigates brake wear particle (BWP) emissions from light-duty electric vehicles (EVs) and heavy-duty vehicles (HDVs) using a self-developed whole-vehicle testing system and a modified brake dynamometer. The results show that regenerative braking significantly reduces emissions: weak and strong regenerative braking modes reduce brake wear PM by 75 % and 87 %, and brake wear PM by 90 % and 95 %, respectively. HDVs with drum brakes produce lower emissions and higher PM/PM ratios than those with disc brakes.

View Article and Find Full Text PDF

Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.

View Article and Find Full Text PDF

Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!