AI Article Synopsis

  • Candoxin, derived from the Malayan krait, is a unique three-finger toxin that causes a reversible neuromuscular blockade, unlike most curaremimetic neurotoxins that result in long-lasting effects.
  • In laboratory tests, candoxin effectively blocked acetylcholine currents in rat muscle receptors at low concentrations, but caused a less reversible block in rat neuronal alpha7 receptors, indicating different effects on these receptor types.
  • Although candoxin lacks a critical structural feature found in long chain neurotoxins, it contains certain key residues that allow it to interact with both muscle and neuronal receptors, suggesting it may have evolved distinct mechanisms for receptor recognition.

Article Abstract

In contrast to most short and long chain curaremimetic neurotoxins that produce virtually irreversible neuromuscular blockade in isolated nerve-muscle preparations, candoxin, a novel three-finger toxin from the Malayan krait Bungarus candidus, produced postjunctional neuromuscular blockade that was readily and completely reversible. Nanomolar concentrations of candoxin (IC(50) = approximately 10 nm) also blocked acetylcholine-evoked currents in oocyte-expressed rat muscle (alphabetagammadelta) nicotinic acetylcholine receptors in a reversible manner. In contrast, it produced a poorly reversible block (IC(50) = approximately 50 nm) of rat neuronal alpha7 receptors, clearly showing diverse functional profiles for the two nicotinic receptor subsets. Interestingly, candoxin lacks the helix-like segment cyclized by the fifth disulfide bridge at the tip of the middle loop of long chain neurotoxins, reported to be critical for binding to alpha7 receptors. However, its solution NMR structure showed the presence of some functionally invariant residues involved in the interaction of both short and long chain neurotoxins to muscle (alphabetagammadelta) and long chain neurotoxins to alpha7 receptors. Candoxin is therefore a novel toxin that shares a common scaffold with long chain alpha-neurotoxins but possibly utilizes additional functional determinants that assist in recognizing neuronal alpha7 receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111152200DOI Listing

Publication Analysis

Top Keywords

long chain
20
alpha7 receptors
16
candoxin novel
12
muscle alphabetagammadelta
12
chain neurotoxins
12
novel toxin
8
bungarus candidus
8
reversible antagonist
8
nicotinic acetylcholine
8
acetylcholine receptors
8

Similar Publications

The development of new and improved antiretroviral therapies that allow for alternative dosing schedules is needed for people living with HIV-1. Islatravir is a deoxyadenosine analog in development for the treatment of HIV-1 that suppresses HIV-1 replication via multiple mechanisms of action, including reverse transcriptase translocation inhibition and delayed chain termination. Islatravir is differentiated from other HIV-1 antiretrovirals by its high potency, long , broad tissue distribution, and favorable drug resistance profile.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF
Article Synopsis
  • Clonorchis sinensis infection significantly worsens overall survival rates in patients with intrahepatic cholangiocarcinoma (ICC) compared to those without the infection.
  • Researchers used RNA sequencing and animal models to investigate how C. sinensis infection facilitates the progression of ICC.
  • The study found that C. sinensis infection leads to increased expression of fatty acid synthase (FASN), which promotes fatty acid synthesis and tumor growth, suggesting a potential new target for treatment in ICC patients infected with C. sinensis.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

BMI trajectories are associated with NAFLD and advanced fibrosis via aging-inflammation mediation.

BMC Public Health

January 2025

Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China.

Background: As the global epidemic of obesity fuels metabolic conditions, the burden of nonalcoholic fatty liver disease (NAFLD) will become enormous. Abundant studies revealed the association between high body mass index (BMI) and NAFLD but overlooked the BMI patterns across life stages. We aimed to explore how BMI trajectories over age relate to NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!