Laser targeted photo-occlusion (LTO) is a novel method being developed to treat choroidal neovascular membranes (CNV) in age-related and other macular degenerations. A photosensitive agent, encapsulated in heat-sensitive liposomes, is administered intravenously. A low power laser warms the targeted tissue and releases a bolus of photosensitizer. The photosensitizer is activated after it clears from the normal choriocapillaris but not from the CNV. Forty-five experimental CNV were induced in seven rats. Five weeks after LTO, complete occlusion was observed by laser targeted angiography (LTA) in 76% of treated CNV, and partial occlusion was found in the remaining 24%. The tissues outside the CNV but within the area treated by LTO showed no flow alteration and no dye leakage. All untreated CNV were patent on LTA at 5 weeks. Light microscopy and electron microscopy confirmed the results in treated and control lesions. Moreover, treated areas next to lesions showed normal photoreceptors, retinal pigment epithelium (RPE), Bruch's membrane and choriocapillaris. These results indicate that LTO may improve current photodynamic therapy by alleviating the need for repeated treatments and by avoiding the long-term risks associated with damage to the RPE and occlusion of normal choriocapillaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/0031-8655(2002)075<0149:ltpoor>2.0.co;2 | DOI Listing |
Seizure
January 2025
Department of Clinical Neurological Sciences, Western University, London, ON. Canada; Department of Paediatrics, Western University, London, ON. Canada. Electronic address:
Objective: To conduct a systematic review on radiofrequency thermocoagulation (RF-TC) in pediatric epilepsy surgery. In addition, due to the low number of dedicated pediatric series, to conduct a pooled analysis of cases published in the literature.
Methods: We conducted a literature search using PUBMED and EMBASE which produced 432 results.
Nat Commun
January 2025
University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000, Strasbourg, France.
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realizations, with neutral atom qubit architecture rapidly establishing itself as a leading platform in the field. Scalable quantum computing will require processing with QEC codes that have low qubit overhead and large error suppression, and while such codes do exist, they involve a degree of non-locality that has yet to be integrated into experimental platforms.
View Article and Find Full Text PDFActa Histochem
January 2025
Section of Anatomy and Histology, Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy. Electronic address:
Epidemic keratoconjunctivitis (EKC) is one of the most severe clinical manifestations of human adenovirus ocular surface infection, which may lead to the formation of subepithelial infiltrates (SEIs) in the anterior corneal stroma in 20-50 % of cases. SEIs may be asymptomatic or give rise to corneal aberrations and visual impairment for months or years after acute infection, despite treatments. Here, we describe the ultrastructural and immunophenotypic features of the anterior corneal stroma of a patient who underwent superficial anterior lamellar keratoplasty (SALK) surgery to remove corneal opacities related to clinically significant and steroid-unresponsive, long-lasting SEIs after adenoviral EKC.
View Article and Find Full Text PDFDiscov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Islamic Republic of Iran.
Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!