A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms. | LitMetric

Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms.

J Physiol

Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA.

Published: March 2002

Inhibition of presynaptic voltage-gated calcium channels by direct G-protein betagamma subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca(2+) channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca(2+) channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type I(Ca) was reversed during a train while greater than 40 % of the inhibition of P/Q-type I(Ca) was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca(2+) channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290166PMC
http://dx.doi.org/10.1113/jphysiol.2001.013206DOI Listing

Publication Analysis

Top Keywords

facilitation p/q-type
12
p/q-type ca2+
12
ca2+ channels
12
channels
9
differential facilitation
8
calcium channels
8
trains action
8
action potential-like
8
potential-like waveforms
8
p/q-type
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!