Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inhibition of presynaptic voltage-gated calcium channels by direct G-protein betagamma subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca(2+) channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca(2+) channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type I(Ca) was reversed during a train while greater than 40 % of the inhibition of P/Q-type I(Ca) was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca(2+) channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290166 | PMC |
http://dx.doi.org/10.1113/jphysiol.2001.013206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!