Angiotensin-converting enzyme inhibitors (ACEi) reduce cardiovascular morbidity and mortality by improving coronary perfusion, reducing ventricular hypertrophy and remodeling, and preventing progression of coronary atherosclerosis. However, the cellular mechanisms underlying the beneficial effects of ACEi are not fully understood. We studied the in vivo effects of ACE inhibition with perindopril on cellular expression of ACE, AT(1) receptors and 2 nitric oxide synthase (NOS) isoforms, endothelial (eNOS) and inducible NOS (iNOS), in human blood vessels using quantitative in vitro autoradiography and immunocytochemistry. Seven patients with ischemic heart disease were treated with perindopril (4 mg/d) for up to 5 weeks before elective coronary bypass surgery, whereas controls did not receive the ACEi (n=7). Perindopril decreased plasma ACE by 70% and the plasma angiotensin II to angiotensin I ratio by 57% and reduced vascular ACE to approximately 65% of control levels in both endothelium and adventitia. By contrast, AT(1) receptor binding in vascular smooth muscle cells was increased by 80% in patients treated with perindopril as confirmed by immunocytochemistry. eNOS was expressed primarily in endothelial cells, whereas little iNOS expression occurred in vascular smooth muscle cells of untreated patients. Both eNOS and iNOS expression seemed to increase during perindopril treatment. These results suggest that suppression of angiotensin II formation in the vascular wall and increased expression of eNOS and iNOS during ACE inhibition may be beneficial in reversing endothelial dysfunction in patients with cardiovascular disease. Because vascular AT(1) receptor expression is increased during chronic ACE inhibition, more clinical studies are required to determine whether it is necessary to combine ACE inhibitors and AT(1) receptor antagonists in clinical management of heart failure, coronary heart disease, and hypertension

Download full-text PDF

Source
http://dx.doi.org/10.1161/hy0202.103417DOI Listing

Publication Analysis

Top Keywords

at1 receptor
16
heart disease
12
ace inhibition
12
angiotensin-converting enzyme
8
nitric oxide
8
oxide synthase
8
coronary heart
8
treated perindopril
8
vascular smooth
8
smooth muscle
8

Similar Publications

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Repeated Amphetamine Exposure Blunted Angiotensin II-Induced Responses Mediated by AT Receptors.

Discov Med

January 2025

Department of Pharmacology "Otto Orsingher", Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Faculty of Chemical Sciences, National University of Córdoba, X5000 Córdoba, Argentina.

Background: Angiotensin II, is critical in regulating the sympathetic and neuroendocrine systems through angiotensin II type 1 receptors (AT-R). Angiotensin II intracerebral administration increases water and sodium intake, as well as renal sodium excretion. Previously, our group has shown that AT-R is involved in behavioral and neurochemical sensitization induced by amphetamine.

View Article and Find Full Text PDF

An Open-Label, Non-randomized, Drug-Repurposing Study to Explore the Clinical Effects of Angiotensin II Type 1 (AT1) Receptor Antagonists on Anxiety and Depression in Parkinson's Disease.

Mov Disord Clin Pract

January 2025

Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.

Background: The cerebral Renin-Angiotensin System might have a role in anxiety and depression development.

Objective: We explored the effects of Angiotensin II Type 1 receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) on anxiety and depression in Parkinson's Disease (PD).

Methods: Four hundred and twenty-three newly diagnosed drug-naïve PD patients were evaluated using the State-Trait Anxiety Inventory (STAI) and Geriatric Depression Scale (GDS-15) tests and were monitored at baseline and for up to 3 years.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!