[Analysis of possible mechanisms of regulation of root branching].

Zh Obshch Biol

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya ul. 35, Moscow 127276, Russia.

Published: June 2002

The formation of lateral roots under the influence of growth inhibitors and phytohormons were studied with germs of corn and flax. All corn primordiums develop into the lateral roots without dormancy period, while some flax primordiums are delayed in development. Removal of root apical meristem (decapitation) does not result in the increase in number of lateral roots of corn germs. Decapitation of flax germs induces the development of some dormant primordiums, that leads to the considerable increase in number of lateral roots. Formation of additional primordium under decapitation does not take place. Auxin stimulates the formation of additional primordiums in flax, but does not effect the number of mature lateral roots. In corn germs synthetic auxin stimulates the development of additional primordiums in root zone, where primordiums are forming after the disturbance. It is shown that the time of primordium development does not change under inhibitor influence, if they do not selectively effect mitoses. It seems that auxins regulate initiation of pericycle division and formation of primordiums of lateral roots on the stage of development of meristematic protuberance. Cytokinins influence the development of already existed primordiums of lateral roots but do not effect the formation of new ones. Constancy of time of primordium formation and independence of their development on the state of the main root need future investigations. The authors suppose that regulation of these processes is non-hormonal.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lateral roots
28
primordiums
8
increase number
8
number lateral
8
roots corn
8
corn germs
8
roots formation
8
formation additional
8
auxin stimulates
8
additional primordiums
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!