Regulation of S-adenosylmethionine (SAM) and the SAM/S-adenosylhomocysteine (SAH) ratio by the key cytosolic enzyme glycine N-methyltransferase (GNMT) is essential in optimizing methyl group supply and subsequent functioning of methyltransferase enzymes. Therefore, inappropriate activation of GNMT may lead to the loss of methyl groups vital for many SAM-dependent transmethylation reactions. Previously, we demonstrated that the retinoid derivatives 13-cis- (CRA) and all-trans-retinoic acid (ATRA) mediated both the activity of GNMT and its abundance. The present study was conducted to determine whether vitamin A had a similar ability to up-regulate GNMT and to assess the biological importance of GNMT modulation by examining both the transmethylation and transsulfuration pathways after retinoid treatment. Rats were fed a control (10% casein + 0.3% L-methionine) diet and orally given retinyl palmitate (RP), CRA, ATRA or vehicle daily for 10 d. RP, CRA and ATRA elevated hepatic GNMT activity 32, 74 and 124%, respectively, compared with the control group. Moreover, the retinoid-mediated changes in GNMT activity were reflected in GNMT abundance (38, 89 and 107% increases for RP-, CRA-, and ATRA-treated rats, respectively). In addition, hepatic DNA, a substrate for SAM-dependent transmethylation, was hypomethylated (approximately 100%) after ATRA treatment compared with the control group. In contrast, the transsulfuration product glutathione was unaffected by retinoid treatment. These results provide evidence of the following: 1) vitamin A, like its retinoic acid derivatives, can induce enzymatically active GNMT; and 2) inappropriate induction of GNMT can lead to a biologically important loss of methyl groups and the subsequent impairment of essential transmethylation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/132.3.365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!