Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Biochemical events explaining the pathology of ischemia-reperfusion in the muscle are still debated. Nitric oxide (NO) has been postulated to be implicated in these phenomena, but the short half-life of this compound makes it difficult to measure.
Methods: In this paper, we used an amperometric solid-sate sensor to measure NO concentrations in frozen human muscles before, during and after a period of ischemia. We also measured cytochrome oxidase activity and malondialdehyde (MDA).
Results: NO increased during ischemia but it soon returned to normal values upon reperfusion. On the other hand, cytochrome oxidase that also decreased in ischemic muscle did not increase during the reperfusion and malondialdehyde only increased during reperfusion, indicating the occurrence of peroxidative reactions in this situation.
Conclusions: NO is implicated in the ischemia/reperfusion pathology, but it is difficult to relate whether this is connected to cytochrome oxidase activity and malondialdehyde formation, also modified in this ischemia-reperfusion model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0009-8981(01)00802-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!