Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantitative evaluation of human tooth structural elements, revealed in acoustic images, has been carried out. It has been shown that tissue elements with different acoustic impedances differed in acoustic images by intensity of grey color, and also feature with different longitudinal sound velocities (C(L)). In the layer of mantle dentin, C(L) is 7% to 8% lower than in bulk dentin, and in the layer of dentin around the pulp chamber, C(L) is 15% lower. In carious enamel and dentin, C(L) decreases up to 7% to 17%. In pathologic teeth, dentin areas with higher density can be revealed; they feature higher C(L); in transparent dentin C(L) can be 15% to 20% higher than in bulk dentin. Results of the present study show that acoustic images reflect internal biomechanical properties of tooth tissue microstructure that can be evaluated quantitatively by means of longitudinal sound velocity determination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0301-5629(01)00480-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!