The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-1656(01)00443-6 | DOI Listing |
Glycobiology
December 2024
Department of Biological Sciences, University of Alberta, Edmonton, AB.
Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM.
View Article and Find Full Text PDFJ Comput Aided Mol Des
November 2024
Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
This study aimed to reveal interactions of the stress response sigma subunits (factors) σ and σ of RNA polymerase and promoters in Gram-positive bacterium Corynebacterium glutamicum by combining wet-lab obtained data and in silico modeling. Computer modeling-guided point mutagenesis of C. glutamicum σ subunit led to the creation of a panel of σ variants.
View Article and Find Full Text PDFMicrob Cell Fact
October 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China.
Background: High-temperature fermentation technology is promising in improving fermentation speed and product quality, and thereby widely used in various fields such as food, pharmaceuticals, and biofuels. However, extreme temperature conditions can disrupt cell membrane structures and interfere with the functionality of biological macromolecules (e.g.
View Article and Find Full Text PDFTrends Biotechnol
October 2024
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Development of efficient microbial strains for biomanufacturing requires deep understanding of the biology and functional components responsible for the synthesis, transport, and tolerance of the target compounds. A high-quality controllable gene overexpression strain collection was constructed for the industrial workhorse Corynebacterium glutamicum covering 99.7% of its genes.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!