Sorbitol, "osmotic stress", stimulates GLUT4 glucose transporter translocation to the plasma membrane and glucose transport by a phosphatidylinositol (PI) 3-kinase-independent mechanism that reportedly involves non-receptor proline-rich tyrosine kinase-2 (PYK2) but subsequent events are obscure. In the present study, we found that extracellular signal-regulated kinase (ERK) pathway components, growth-factor-receptor-bound-2 protein, son of sevenless (SOS), RAS, RAF and mitogen-activated protein (MAP) kinase/ERK kinase, MEK(-1), operating downstream of PYK2, were required for sorbitol-stimulated GLUT4 translocation/glucose transport in rat adipocytes, L6 myotubes and 3T3/L1 adipocytes. Furthermore, sorbitol activated atypical protein kinase C (aPKC) through a similar mechanism depending on the PYK2/ERK pathway, independent of PI 3-kinase and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1). Like PYK2/ERK pathway components, aPKCs were required for sorbitol-stimulated GLUT4 translocation/glucose transport. Interestingly, sorbitol stimulated increases in phospholipase D (PLD) activity and generation of phosphatidic acid (PA), which directly activated aPKCs. As with aPKCs and glucose transport, sorbitol-stimulated PLD activity was dependent on the ERK pathway. Moreover, PLD-generated PA was required for sorbitol-induced activation of aPKCs and GLUT4 translocation/glucose transport. Our findings suggest that sorbitol sequentially activates PYK2, the ERK pathway and PLD, thereby increasing PA, which activates aPKCs and GLUT4 translocation. This mechanism contrasts with that of insulin, which primarily uses PI 3-kinase, D3-PO(4) polyphosphoinositides and PDK-1 to activate aPKCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222431PMC
http://dx.doi.org/10.1042/0264-6021:3620665DOI Listing

Publication Analysis

Top Keywords

translocation/glucose transport
16
erk pathway
12
glut4 translocation/glucose
12
atypical protein
8
protein kinase
8
glut4 glucose
8
glucose transporter
8
proline-rich tyrosine
8
tyrosine kinase-2
8
extracellular signal-regulated
8

Similar Publications

Insulin sensitization by small molecules enhancing GLUT4 translocation.

Cell Chem Biol

August 2023

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA. Electronic address:

Insulin resistance (IR) is the root cause of type II diabetes, yet no safe treatment is available to address it. Using a high throughput compatible assay that measures real-time translocation of the glucose transporter glucose transporter 4 (GLUT4), we identified small molecules that potentiate insulin action. In vivo, these insulin sensitizers improve insulin-stimulated GLUT4 translocation, glucose tolerance, and glucose uptake in a model of IR.

View Article and Find Full Text PDF

Obesity-associated type 2 diabetes mellitus is associated with the development of insulin resistance. Among several metabolites, resolvins that are metabolites of eicosapentaenoic acid have been shown to exert insulin-sensitizing effects; however, the role of resolvin E3 (RvE3) in glucose metabolism has not been studied. In this study, the effect of RvE3 on glucose metabolism in mice with high-fat diet-induced obesity and 3T3L1 adipocytes was studied.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity and body fat distribution are linked to type 2 diabetes and metabolic syndrome, highlighting the importance of understanding how different fat cells function.
  • Recent research identified a protein called LMO3 in visceral adipocytes, which may play a role in regulating adipocyte functions during obesity, but its specific purpose remains to be clarified.
  • The study demonstrated that increasing LMO3 expression in mice led to improved insulin sensitivity and enhanced glucose uptake in fat cells, suggesting it could be a potential target for addressing obesity-related metabolic issues.
View Article and Find Full Text PDF

The adipocytokine adiponectin and its structural homologs, the C1q/TNF-related proteins (CTRPs), increase insulin sensitivity, fatty acid oxidation and mitochondrial biogenesis. Adiponectin- and CTRP-induced signal transduction has been described to involve the adiponectin receptors and a number of co-receptors including the Low density lipoprotein receptor-related protein 1 (LRP1). LRP1 is another target of the proprotein convertase subtilisin/kexin-9 (PCSK9) in addition to the LDL-receptor (LDL-R).

View Article and Find Full Text PDF

Aims: Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!