Objective: To determine the molecular basis of a retinopathy previously described as dominant macular subretinal neovascularization with peripheral retinal degeneration.

Methods: The TIMP3 gene was analyzed in family members, and 4 mutation-positive patients were studied using psychophysics and electroretinography.

Results: Cosegregating with disease in the family was a single base pair change in the TIMP3 gene, altering a conserved tyrosine to cysteine at amino acid position 172 (Y172C). There was psychophysical and electroretinographic evidence of rod dysfunction greater than cone dysfunction. Dark adaptometry showed abnormalities with regional retinal variation in degree.

Conclusions: The Y172C mutation in the TIMP3 gene is another cause of Sorsby fundus dystrophy. The expression of this form of the disease, as in other C-terminal TIMP3 mutations, is speculated to be secondary to mutant TIMP-3, causing a decreased turnover of the extracellular matrix.

Clinical Relevance: The molecular clarification of inherited retinal degeneration involving abnormal extracellular matrix turnover in and around Bruch's membrane should provide clues to the pathogenesis of not only these particular diseases but also forms of age-related macular degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archopht.120.3.376DOI Listing

Publication Analysis

Top Keywords

timp3 gene
16
mutation timp3
8
gene sorsby
8
sorsby fundus
8
fundus dystrophy
8
timp3
5
novel mutation
4
gene
4
dystrophy objective
4
objective determine
4

Similar Publications

Targeted low-throughput studies have previously identified subcellular RNA localization as necessary for cellular functions including polarization, and translocation. Furthermore, these studies link localization to RNA isoform expression, especially 3' Untranslated Region (UTR) regulation. The recent introduction of genome-wide spatial transcriptomics techniques enables the potential to test if subcellular localization is regulated in situ pervasively.

View Article and Find Full Text PDF

Kidney fibrosis is a commonly observed pathological condition during development of chronic kidney disease. Therapeutic options currently available are effective only in slowing the progression of kidney fibrosis and there is no cure for this disease. Aberrant expression and excessive accumulation of extracellular matrix (ECM) proteins in the peritubular space is a characteristic pathological feature of fibrotic kidney.

View Article and Find Full Text PDF

Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how synovial fluid from the shoulder affects umbilical cord-derived mesenchymal stem cells (SF-UC-MSCs) and their potential role in treating tendinopathy.
  • Specifically, it looks at the impact of these stem cells on tenocytes (cells in tendons) from patients with degenerative rotator cuff tears under inflammatory conditions induced by interleukin-1β (IL-1β).
  • Results show that SF-UC-MSCs conditioned media reduces inflammation in tenocytes while promoting the expression of protective growth factors, suggesting a promising therapeutic avenue for tendon injuries.
View Article and Find Full Text PDF

Objective: To investigate the effect of fibulin-3 on the senescence of intervertebral disc nucleus pulposus cells (NPCs) through the regulation of tissue inhibitor of metalloproteinases 3 (TIMP-3) expression and to elucidate the molecular mechanisms involved.

Methods: 1). The nucleus pulposus tissues and imaging data of 37 patients who had undergone intervertebral disc surgery were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!