Protein modification and peptide analysis are important techniques for the elucidation of the structure and function of enzymes. We describe a new technique for the identification of peptides covalently modified with the maleimide cross-linker o-phenylenebismaleimide (OPBM). The method can identify labeled peptides without the use of sophisticated instrumentation or radioactive markers and takes advantage of the separating power of RPLC and of the sensitivity of immunoblotting. Chloroplast ATPase F1 was labeled at a single cysteine residue by OPBM and trypsinized. Fractions collected by RPLC were bound to polyvinylidene fluoride (PVDF). Despite the small size of the OPBM-labeled peptide (1.84 kDa) it was possible to immobilize it on PVDF by using glutaraldehyde to conjugate the peptide to a larger, unlabeled protein. Polyclonal antibodies raised against the cross-linker N,N',1,5-naphthalenebismaleimide (NBM) cross-react with OPBM. These antibodies detected the presence of OPBM displayed on the PVDF and correctly identified the RPLC fraction containing the OPBM-labeled peptide as verified by both mass spectroscopy and radiolabeling of OPBM. This method could be adapted to detect the presence of linear epitopes recognized by an antibody and is a broadly applicable technique for the immunodetection of peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.2001.5538DOI Listing

Publication Analysis

Top Keywords

polyvinylidene fluoride
8
opbm method
8
opbm-labeled peptide
8
opbm
5
immunodetection small
4
small o-phenylenebismaleimide-labeled
4
peptides
4
o-phenylenebismaleimide-labeled peptides
4
peptides carrier
4
carrier protein
4

Similar Publications

This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.

View Article and Find Full Text PDF

Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!