Distribution of an 18 kDa-selenoprotein in several tissues of the rat.

J Trace Elem Med Biol

Hahn-Meitner-Institut Berlin, Department Molecular Trace Elements Research in the Life Science, Germany.

Published: August 2002

By combining methods for trace element analysis, tracer techniques and various biochemical and electrophoretical procedures, information on the characteristics of an 18 kDa-selenoprotein was obtained. By labeling of rats in vivo with [75Se]-selenite and gel electrophoretic separation of the proteins in tissues and subcellular fractions, a larger number of selenium-containing proteins could be distinguished. In most of the tissues investigated a labeled 18 kDa-band was present. After co-electrophoresis of the 18 kDa-bands from kidney, liver and brain we found that they all migrated in the same way. Using ultracentrifugational fractionation the 18 kDa-band was localized in the mitochondrial and microsomal membranes. Two-dimensional electrophoresis showed that it consists of a single selenium-containing protein with an isoelectric point of about 4.9-5.0. By means of proteolytic cleavage of the 18 kDa-protein and separation of its peptides by tricine-SDS-PAGE six selenium-containing peptides with molecular masses of 17, 16, 14, 12, 10, and 8 kDa were detected. After electrophoretic separation of the mitochondrial and/or microsomal proteins and acid hydrolysis of the electroeluted protein its amino acid composition was analyzed by RP-HPLC. In this way it was shown that selenium is present in the 18 kDa-protein in form of selenocysteine which is a characteristic of a genetically encoded selenoprotein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0946-672X(02)80009-8DOI Listing

Publication Analysis

Top Keywords

electrophoretic separation
8
distribution kda-selenoprotein
4
kda-selenoprotein tissues
4
tissues rat
4
rat combining
4
combining methods
4
methods trace
4
trace element
4
element analysis
4
analysis tracer
4

Similar Publications

Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.

View Article and Find Full Text PDF

The cosmetics industry is one of the fastest-growing sectors worldwide. The dynamic evolution of this industry results in an increasingly diverse range of products containing various active ingredients. Ensuring the quality of these products is crucial for consumer safety, necessitating the use of advanced analytical methods and adherence to legal regulations.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Cyclodextrin Inclusion Complexes with Hydrocortisone-Type Corticosteroids.

Pharmaceutics

December 2024

Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland.

The hydrocortisone-type corticosteroid (HTC) group includes valuable active pharmaceutical ingredients (APIs) such as hydrocortisone, hydrocortisone acetate, cortisone acetate, tixocortol pivalate, prednisolone, methylprednisolone, and prednisone. Unfortunately, those APIs are characterized by low solubility, which hampers their application and reduces their therapeutic efficacy. The low polarity of HTC molecules allows them to form inclusion complexes with various cyclodextrins (CDs); however, as shown in this review, the type of applied CDs has a major impact on the final properties of the formed complex.

View Article and Find Full Text PDF

Developing a Simple and Feasible Process for the Crude Extraction of Livetins and Phosvitin from Egg Yolk.

Foods

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

Due to imbalanced demand favoring egg whites, the egg industry faces a surplus of egg yolk, limiting overall growth. This study designed a feasible process for the crude extraction of livetins and phosvitin (PV) and revealed the related separation mechanisms. Our method utilized a 1:9 egg yolk dilution at pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!