Citrate-mediated increase in the uptake of weathered 2,2-bis(p-chlorophenyl) 1,1-dichloroethylene residues by plants.

Environ Toxicol Chem

Department of Soil and Water, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA.

Published: March 2002

Experiments were conducted to determine the ability of citrate to enhance the plant uptake of weathered 2,2-bis(p-chlorophenyl)1,1-dichloroethylene (p,p'-DDE) from soil. Plots containing three rows of clover, mustard, hairy vetch, or rye grass were constructed in soils containing p,p'-DDE. On 11 occasions, the rows of each crop received water or sodium citrate (0.005 or 0.05 M). For each crop, there were significant reductions in p,p'-DDE concentration in the soil fractions (near root and rhizosphere) closely associated with the plant versus bulk soil. The roots of each crop accumulated 2 to 5 times more of the weathered contaminant (dry wt) than present in the bulk soil. Citrate (0.05 M) increased the concentration of p,p'-DDE in the roots of clover, mustard, and hairy vetch by 39% compared with vegetation that received water. In batch desorption studies, the release of weathered p,p'-DDE was significantly greater in the presence of 0.05 M citrate than in water. Citrate increased the extracted aqueous concentrations of five metal ions (Al, Fe, Ca, K, Mn) from soil by five- to 23-fold over distilled water. We hypothesize that citrate physically disrupts the soil through chelation of structural metal ions and release of bound humic material, facilitating p,p'-DDE availability and uptake by plants.

Download full-text PDF

Source
http://dx.doi.org/10.1897/1551-5028(2002)021<0550:cmiitu>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

uptake weathered
8
clover mustard
8
mustard hairy
8
hairy vetch
8
received water
8
bulk soil
8
metal ions
8
citrate
6
pp'-dde
6
soil
6

Similar Publications

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

Drought-Induced Weakening of Temperature Control on Ecosystem Carbon Uptake Across Northern Lands.

Glob Chang Biol

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.

View Article and Find Full Text PDF

This study investigates the synergistic effects of zinc oxide nanoparticles (ZnO NPs) and melatonin (MT) on Fragaria × ananassa (strawberry) plants under drought stress, focusing on growth, fruit biomass, and stress tolerance. ZnO NPs enhance nutrient uptake and stress resistance, while MT regulates growth hormones and boosts photosynthetic efficiency. Seven treatments were evaluated: T1 (no stress, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!