An improved analytical method was developed and validated for the determination of the monosaccharide anhydrides levoglucosan, mannosan, and galactosan in atmospheric aerosol samples. The method uses an external recovery standard, extraction in dichloromethane, trimethylsilylation, addition of an internal standard (1-phenyl dodecane), and analysis by gas chromatography with flame ionization detection (GC-FID) and gas chromatography/mass spectrometry (GC/MS). As external recovery standard, we selected 1,2,3-trihydroxyhexane, which has a similar polarity as the monosaccharide anhydrides; furthermore, it was ensured that the trimethylsilylation step leads to complete derivatization into trimethylsilyl ethers. The reproducibility of the combined trimethylsilylation and analysis of levoglucosan was about 2% for standard solutions, whereas the precision of the entire method for the sum of all three monosaccharide anhydrides (MAs) in real aerosol filter samples was about 5%. The method was applied to aerosol samples from urban and tropical locations. The atmospheric concentration of the MAs in fine (<2.5 microm) aerosols at a primary forest site in Rondĵnia, Brazil, was on average 2.15 microg m(-3) during the dry season when intensive biomass burning occurs, which was almost 400 times higher than during the wet (nonburning) season. Urban total aerosols collected in Gent, Belgium, showed an average atmospheric concentration of MAs of 0.56 microg m(-3) for the winter season, which was a factor of 20 higher than for the summer season. The carbon in the MAs accounted on average for about 5.1% and 1.8% of the organic carbon in the Brazilian dry season and Gent winter aerosols, respectively. Levoglucosan was the major MA, with a relative abundance in the range of 76-93%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es015619vDOI Listing

Publication Analysis

Top Keywords

monosaccharide anhydrides
16
samples urban
8
urban tropical
8
tropical locations
8
aerosol samples
8
samples method
8
external recovery
8
recovery standard
8
improved method
4
method quantifying
4

Similar Publications

Degradation mechanism of difructose dianhydride III in Blautia species.

Appl Microbiol Biotechnol

November 2024

Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.

Di-fructofuranose 1,2':2,3' dianhydride (DFA-III) is a cyclic fructo-disaccharide, which is produced by the condensation of two fructose molecules via the caramelization or enzymatic reaction of inulin fructotransferase. A strain of Blautia producta was known to utilize DFA-III as a carbohydrate source; however, the mechanisms remain unclear. In this study, we characterized the glycoside hydrolase (GH) family 91 DFA-III hydrolase (DFA-IIIase) from B.

View Article and Find Full Text PDF

In this study, carboxymethyl locust bean gum was synthesized and nanocomposite hydrogel microspheres (GHMs) of gliclazide were produced based on nanosilicate reinforcement and aluminium-ion driven gelation process, followed by covalent crosslinking with glutaric anhydride (GA). The effect of three independent variables (polymer and GA concentration, incubation time) on the drug entrapment efficiency (DEE%) and percent drug release at 8 h, was optimized using Box-Behnken design. The highest DEE (%) and lowest drug release was achieved at the following optimized conditions: polymer (2.

View Article and Find Full Text PDF

Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (IFTase) as a model system, which can degrade inulin into functionally difructose anhydride I.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic metabolic disorder marked by elevated blood sugar levels, leading to organ dysfunction. Curcumin, derived from turmeric, exhibits promise in managing type II diabetes. Nanomicelles were created by conjugating curcumin with chitosan through succinic anhydride.

View Article and Find Full Text PDF

Comparing levoglucosan and mannosan ratios in sediments and corresponding aerosols from recent Australian fires.

Sci Total Environ

October 2024

Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia; Derwent Estuary Program, 24 Davey Street, Hobart, Tasmania 7000, Australia.

The monosaccharide anhydrides levoglucosan, mannosan, and galactosan are known as 'fire sugars' as they are powerful proxies used to trace fire events. Despite their increasing use, their application is not completely understood, especially in the context of tracing past fire events using sediment samples. There are many uncertainties about fire sugar formation, partitioning, transport, complexation, and stability along all stages of the source-to-sink pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!