The main aim of intensive care in acute head injury and in the postoperative period is to prevent, detect, and revert a secondary neuronal injury. To maintain the optimum systemic and cerebrovascular functions can substantially promote this aim achievement. There are some new neuroprotective interventions that are currently under investigation. Although the major focus of recent cerebral protection researches has been on the development of receptor-specific drugs, this effort has resulted in better outcomes. At present, patients are well served by using more traditional techniques to prevent and treat cerebral ischemic events. Initial therapy should include interventions to improve cerebral perfusion and the oxygen-carrying capacity of blood. Once this is accomplished, measures should be made to monitor blood glucose concentrations and to treat fever. General anesthetic choice may be of great importance in monitoring intracranial pressure and seizure activity. However, if direct cerebral protection is desired, a barbiturate should be the anesthetic of choice. All these measures should increase the chance of patients to neurologically recover following hypoxia and ischemia.
Download full-text PDF |
Source |
---|
J Med Internet Res
January 2025
Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China.
This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFJAMA Surg
January 2025
Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix.
Importance: Normothermic machine perfusion (NMP) has been shown to reduce peritransplant complications. Despite increasing NMP use in liver transplant (LT), there is a scarcity of real-world clinical experience data.
Objective: To compare LT outcomes between donation after brain death (DBD) and donation after circulatory death (DCD) allografts preserved with NMP or static cold storage (SCS).
Metab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!