A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A kinetic model of intermediate formation during assembly of cholera toxin B-subunit pentamers. | LitMetric

Cholera toxin is the most important virulence factor produced by Vibrio cholerae. The pentameric B-subunit of the toxin can bind to GM1-ganglioside receptors, leading to toxin entry into mammalian cells. Here, the in vitro disassembly and reassembly of CtxB(5) (the B subunit pentamer of cholera toxin) is investigated. When CtxB(5) was acidified at pH 1.0 and then neutralized, the B-subunits disassembled and could no longer migrate as SDS-stable pentamers on polyacrylamide gels or be captured by GM1. However, continued incubation at neutral pH resulted in the B-subunits regaining the capacity to be detected by GM1 enzyme-linked immunosorbent assay (t(12) approximately 8 min) and to migrate as SDS-stable pentamers (t(12) approximately 15 min). Time-dependent changes in Trp fluorescence intensity during B-subunit reassembly occurred with a half-time of approximately 8 min, similar to that detected by GM1 enzyme-linked immunosorbent assay, suggesting that both methods monitor earlier events than B-pentamer formation alone. Based on the Trp fluorescence intensity measurements, a kinetic model of the pathway of CtxB(5) reassembly was generated that depended on trans to cis isomerization of Pro-93 to give an interface capable of subunit-subunit interaction. The model suggests formation of intermediates in the reaction, and these were successfully detected by glutaraldehyde cross-linking.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110561200DOI Listing

Publication Analysis

Top Keywords

cholera toxin
12
kinetic model
8
migrate sds-stable
8
sds-stable pentamers
8
detected gm1
8
gm1 enzyme-linked
8
enzyme-linked immunosorbent
8
immunosorbent assay
8
t12 min
8
trp fluorescence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!