Phosphatidylinositol 4-phosphate 5-kinase (PIP-5kin) regulates actin cytoskeletal reorganization through its product phosphatidylinositol 4,5-bisphosphate. In the present study we demonstrate that PIP-5kin is essential for neurite remodeling, which is regulated by actin cytoskeletal reorganization in neuroblastoma N1E-115 cells. Overexpression of wild-type mouse PIP-5kin-alpha inhibits the neurite formation that is normally stimulated by serum depletion, whereas a lipid kinase-defective mutant of PIP-5kin-alpha, D266A, triggers neurite extension even in the presence of serum and blocks lysophosphatidic acid-induced neurite retraction. These results phenocopy those previously reported for the small GTPase RhoA and its effector p160 Rho-associated coiled coil-forming protein kinase (ROCK). However, the ROCK-specific inhibitor Y-27632 failed to block the inhibition by PIP-5kin-alpha of neurite extension, whereas D266A did block the neurite retraction induced by overexpression of ROCK. These results, taken together, suggest that PIP-5kin-alpha functions as a downstream effector for RhoA/ROCK to couple lysophosphatidic acid signaling to neurite retraction presumably through its product phosphatidylinositol 4,5-bisphosphate.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109795200DOI Listing

Publication Analysis

Top Keywords

neurite retraction
12
phosphatidylinositol 4-phosphate
8
4-phosphate 5-kinase
8
neurite
8
neurite remodeling
8
actin cytoskeletal
8
cytoskeletal reorganization
8
product phosphatidylinositol
8
phosphatidylinositol 45-bisphosphate
8
neurite extension
8

Similar Publications

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5.

Neurobiol Dis

December 2024

Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany. Electronic address:

The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear.

View Article and Find Full Text PDF

Neurite initiation from newly born neurons is a critical step in neuronal differentiation and migration. Neuronal migration in the developing cortex is accompanied by dynamic extension and retraction of neurites as neurons progress through bipolar and multipolar states. However, there is a relative lack of understanding regarding how the dynamic extension and retraction of neurites is regulated during neuronal migration.

View Article and Find Full Text PDF

A Pro-Inflammatory Stimulus versus Extensive Passaging of DITNC1 Astrocyte Cultures as Models to Study Astrogliosis.

Int J Mol Sci

August 2024

Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.

Astrogliosis is a process by which astrocytes, when exposed to inflammation, exhibit hypertrophy, motility, and elevated expression of reactivity markers such as Glial Fibrillar Acidic Protein, Vimentin, and Connexin43. Since 1999, our laboratory in Chile has been studying molecular signaling pathways associated with "gliosis" and has reported that reactive astrocytes upregulate Syndecan 4 and αβ Integrin, which are receptors for the neuronal glycoprotein Thy-1. Thy-1 engagement stimulates adhesion and migration of reactive astrocytes and induces neurons to retract neurites, thus hindering neuronal network repair.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!