The proteasome is involved in multiple cellular processes including control of the cell cycle, apoptosis and intracellular signalling; loss of proteasome function has been postulated to participate in the pathogenesis of triplet repeat diseases. We examined the vulnerability of central neurons to proteasome inhibition and tested the ability of anti-excitotoxic and anti-apoptotic treatments to attenuate proteasome inhibition-induced neuronal death. Exposure of murine neocortical cultures to proteasome inhibitors (0.1-10 microm clasto-lactacystin beta-lactone or MG-132) for 48 h resulted in widespread neuronal death associated with a reduction in intracellular free calcium; higher inhibitor concentrations killed astrocytes. Cultured striatal neurons were more vulnerable than cortical neurons. Within each population, the NADPH diaphorase-positive neuronal subpopulation was more vulnerable than the general neuronal population. Enhancing calcium entry with S(-)BayK8644 or kainate, or blocking apoptosis with cycloheximide, actinomycin D or Z-VAD.FMK attenuated neuronal death, whereas, reducing calcium entry with NMDA antagonists or R(+)BayK8644 potentiated neuronal death. These findings suggest that proteasome inhibition can induce selective neuronal apoptosis associated with intracellular calcium starvation, and point to manipulation of intracellular calcium as a specific therapeutic strategy. In particular, concern is raised that glutamate receptor antagonists might exacerbate, rather than attenuate, proteasome inhibition-induced neuronal death.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0953-816x.2001.01867.xDOI Listing

Publication Analysis

Top Keywords

neuronal death
24
proteasome inhibition
12
neuronal
9
nmda antagonists
8
antagonists exacerbate
8
proteasome
8
striatal neurons
8
neurons proteasome
8
attenuate proteasome
8
proteasome inhibition-induced
8

Similar Publications

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown.

View Article and Find Full Text PDF

Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory and cognitive impairments. Previous studies have shown neuronal death in the brains of AD patients, but the role of cuproptosis and its associated genes in AD neurons remains unclear.

Methods: Intersection analysis was conducted using the AD transcriptome dataset GSE63060, neuron dataset GSE147528, and reported cuproptosis-related genes to identify the cuproptosis key gene highly expressed in AD.

View Article and Find Full Text PDF

Melittin (MEL) is the main bioactive component of bee venom and has been reported to have various pharmacological effects. This study investigates the protective effect of MEL on MPP-injured HT22 cells and the possible mechanisms involved. We treated the cells with 4 mM MPP for 24 h to induce a cellular injury model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!