Superantigen reactive Vbeta6+ T cells induce perforin/granzyme B mediated caspase-independent apoptosis in tumour cells.

Br J Cancer

Division of Cellular Immunology, G0100, Tumorimmunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Published: March 2002

The endogenous viral superantigen 7 in DBA/2 mice serves as a target antigen on syngeneic ESb-MP lymphoma cells for allogeneic graft-vs-leukaemia reactive cells. Allogeneic viral superantigen 7 reactive Vbeta6+ T cells are able to transfer graft-vs-leukaemia reactivity and to kill specifically viral superantigen 7+ ESb-MP tumour cells in vitro. Here we elucidate the mechanism of this superantigen specific cell lysis. Already 10 min after co-incubation with in vitro stimulated Vbeta6+ T cells, viral superantigen 7+ ESb-MP tumour cells show an apoptotic phenotype (Annexin V-positivity, DNA-fragmentation). This extremely rapid type of cell death is not mediated by the death inducing ligands CD95L, TRAIL and TNF but by perforin and granzyme B. Surprisingly, neither mitochondria nor any of the known caspases appear to be involved in this type of tumour cell killing. In contrast, nitric oxide, released by activated macrophages and endothelial cells, induces in the same tumour cells another type of apoptosis which is much slower and involves mitochondria and caspase activation. A synergistic effect between the two different effector mechanisms of superantigen reactive donor cytotoxic T lymphocytes and nitric oxide releasing host macrophages and endothelial cells might explain the effective immune rejection of even advanced metastasised cancer in this graft-vs-leukaemia animal model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375320PMC
http://dx.doi.org/10.1038/sj.bjc.6600104DOI Listing

Publication Analysis

Top Keywords

tumour cells
16
viral superantigen
16
superantigen reactive
12
vbeta6+ cells
12
cells
11
reactive vbeta6+
8
cells allogeneic
8
superantigen esb-mp
8
esb-mp tumour
8
nitric oxide
8

Similar Publications

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!