The endogenous viral superantigen 7 in DBA/2 mice serves as a target antigen on syngeneic ESb-MP lymphoma cells for allogeneic graft-vs-leukaemia reactive cells. Allogeneic viral superantigen 7 reactive Vbeta6+ T cells are able to transfer graft-vs-leukaemia reactivity and to kill specifically viral superantigen 7+ ESb-MP tumour cells in vitro. Here we elucidate the mechanism of this superantigen specific cell lysis. Already 10 min after co-incubation with in vitro stimulated Vbeta6+ T cells, viral superantigen 7+ ESb-MP tumour cells show an apoptotic phenotype (Annexin V-positivity, DNA-fragmentation). This extremely rapid type of cell death is not mediated by the death inducing ligands CD95L, TRAIL and TNF but by perforin and granzyme B. Surprisingly, neither mitochondria nor any of the known caspases appear to be involved in this type of tumour cell killing. In contrast, nitric oxide, released by activated macrophages and endothelial cells, induces in the same tumour cells another type of apoptosis which is much slower and involves mitochondria and caspase activation. A synergistic effect between the two different effector mechanisms of superantigen reactive donor cytotoxic T lymphocytes and nitric oxide releasing host macrophages and endothelial cells might explain the effective immune rejection of even advanced metastasised cancer in this graft-vs-leukaemia animal model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375320 | PMC |
http://dx.doi.org/10.1038/sj.bjc.6600104 | DOI Listing |
Alzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Department of Polymer Science and Engineering, 96 Jinzhai Road, 230026, , 230026, Hefei, CHINA.
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!