Rationale: Recent studies indicate that sex and rodent strain are determinants of sensitivity to opioid-induced antinociception.

Objectives: The present study examined the influence of sex and rat strain on kappa opioid-induced antinociception using a series of kappa opioids that vary in their relative effectiveness.

Methods: In a warm-water (50, 52 and 55C) tail-withdrawal procedure, the antinociceptive effects of kappa opioids were determined in male and female rats of the F344, Lewis and Sprague-Dawley (SD) strains.

Results: In both males and females of each strain, spiradoline produced high levels of antinociception across all nociceptive stimulus intensities, whereas U50,488 produced high levels only at the low and moderate nociceptive stimulus intensities. Sex differences in the potency and effectiveness of these kappa opioids were relatively small and not consistently obtained. Enadoline, bremazocine and nalorphine were less effective than spiradoline in producing antinociception, and at low and moderate nociceptive stimulus intensities these opioids were both more potent and effective in F344 and SD males than their female counterparts. In contrast, in Lewis rats, only bremazocine was more potent and effective in males. In combination tests, bremazocine shifted the spiradoline dose-effect curve leftward and/or upward in males and rightward in females (i.e., antagonized spiradoline). In contrast, in both males and females enadoline shifted the spiradoline dose-effect curve leftward and/or upward.

Conclusions: These data indicate that kappa opioids were generally more potent and effective as antinociceptive agents in males than females. Similar to data obtained with micro opioids, the magnitude of these sex differences was generally larger with the less effective kappa opioids and determined, in part, by rat strain and nociceptive stimulus intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-001-0949-2DOI Listing

Publication Analysis

Top Keywords

kappa opioids
20
nociceptive stimulus
16
rat strain
12
males females
12
stimulus intensities
12
potent effective
12
sex rat
8
kappa opioid-induced
8
opioid-induced antinociception
8
opioids determined
8

Similar Publications

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Neurobiological mechanisms of nicotine's effects on feeding and body weight.

Neurosci Biobehav Rev

January 2025

Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China. Electronic address:

Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure.

View Article and Find Full Text PDF

Background: Anrikefon (HSK21542), a potent and selective peripheral kappa opioid receptor (KOR) agonist developed by Haisco, effectively blocks pain and itch signals.

Aim: To develop a population pharmacokinetic (PK) model for anrikefon and conduct exposure-response (E-R) analysis for safety and efficacy in postoperative pain patients.

Method: The Population PK analysis uses NONMEM software with data from six trials.

View Article and Find Full Text PDF

TEMPORARY REMOVAL: Targeting the kappa opioid receptor for analgesia and antitumour effects.

Br J Anaesth

January 2025

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA. Electronic address:

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!