A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. | LitMetric

AI Article Synopsis

  • Hormone-activated estrogen receptors (ERalpha and ERbeta) bind to specific DNA sequences called estrogen response elements (EREs), which play a crucial role in regulating target gene activity.
  • The study analyzes how various EREs affect the activity of ERs with estrogen and xenoestrogen ligands, showing that the type of ERE influences receptor interactions and coactivator binding preferences.
  • These findings suggest that the specific sequence of EREs not only determines receptor structure and function but may also influence gene expression mechanisms across other hormone receptors and transcription factors.

Article Abstract

Hormone-activated ERs (ERalpha and ERbeta) bind with high affinity to specific DNA sequences, estrogen response elements (EREs), located within the regulatory regions of target genes. Once considered to function solely as receptor tethers, there is an increasing amount of recent evidence to suggest that the sequence of the ERE can influence receptor activity. In this study, we have performed a systematic analysis of the role of different EREs in ER pharmacology. Specifically, by measuring ER activity on the vitellogenin A2, complement 3 gene, pS2, and lactoferrin EREs, we demonstrate that the activities of E2 and xenoestrogen ligands through ERalpha and ERbeta are significantly influenced by the nature of the response element. Using a series of ERalpha and ERbeta interacting peptides that contain the coactivator-binding motif LXXLL, we show that the type of ERE with which the receptor associates regulates the structure of the coactivator pocket on ER. Furthermore, using a novel ELISA developed to measure ER-coactivator interactions revealed that these different conformational states of ERalpha and ERbeta are functionally relevant, as they dictate receptor coactivator binding preference. Together, these results indicate that the DNA response element is a key regulator of receptor structure and biological activity and suggest the ERE sequence influences the recruitment of coactivators to the ER at target gene promoters. We propose that DNA-induced alteration of protein structure and coregulator recruitment may serve as a universal regulatory component for differential gene expression by other nuclear hormone receptors and unrelated transcription factors.

Download full-text PDF

Source
http://dx.doi.org/10.1210/mend.16.3.0814DOI Listing

Publication Analysis

Top Keywords

eralpha erbeta
16
receptor structure
8
estrogen response
8
response elements
8
response element
8
receptor
6
allosteric regulation
4
regulation estrogen
4
estrogen receptor
4
structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!