We developed and tested a simple method for fluorescence labeling and interaction analysis of proteins based on a highly efficient in vitro translation system combined with high-throughput technologies such as microarrays and fluorescence cross-correlation spectroscopy (FCCS). By use of puromycin analogs linked to various fluorophores through a deoxycytidylic acid linker, a single fluorophore can be efficiently incorporated into a protein at the carboxyl terminus during in vitro translation. We confirmed that the resulting fluorescently labeled proteins are useful for probing protein-protein and protein-DNA interactions by means of pulldown assay, DNA microarrays, and FCCS in model experiments. These fluorescence assay systems can be easily extended to highly parallel analysis of protein interactions in studies of functional genomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155293PMC
http://dx.doi.org/10.1101/gr.218802DOI Listing

Publication Analysis

Top Keywords

fluorescence labeling
8
analysis protein
8
protein interactions
8
vitro translation
8
novel fluorescence
4
labeling high-throughput
4
high-throughput assay
4
assay technologies
4
technologies vitro
4
vitro analysis
4

Similar Publications

Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells.

Chem Sci

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.

View Article and Find Full Text PDF

In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window.

Biomed Opt Express

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.

View Article and Find Full Text PDF

Super-resolution optical fluctuation imaging (SOFI) rapidly generates super-resolution images by analyzing fluorescence intensity fluctuations. However, fluorophores for high-order SOFI applications are very rare. Here, we report ultrasmall semiconducting polymer dots (Pdots) to achieve high-order SOFI at single-particle and cellular levels.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!