The skin is a unique organ that contains two different subsets of dendritic cells, i.e., Langerhans cells and dermal dendritic cells. Our hypothesis is that cutaneous fibroblasts may affect the development of these dendritic cells. We cocultured cord blood CD34+ hematopoietic progenitor cells with several human cutaneous fibroblast cell lines without any exogenous cytokines for 3 wk. In this culture, hematopoietic progenitor cells increased in number from 20.1 +/- 2.4 times, and produced aggregates of cells with dendritic processes. They were composed of 54.9 +/- 3.2% HLA-DR+ CD14+ CD1a-- cells and 13.8 +/- 3.6% HLA-DR+ CD1a+ cells, which also expressed CD11b and CD11c. There were significant numbers of factor XIIIa+ cells in the culture, whereas no Lag+ or E-cadherin+ cells were detected, and they were potent stimulators in allogeneic T cell activation. There was a significant difference in the ability to induce CD1a+ cells among different human cutaneous fibroblast cell lines. These CD1a+ cells lacked the expression of CD80, CD86, or CD83. In addition, half of them still expressed CD14. When these dendritic cells were cultured with tumor necrosis factor-alpha, however, they became mature dendritic cells with augmented expression of CD86 and CD83 and with increased allogeneic T cell stimulation. The subsequent experiment using a dividing chamber, enzyme-linked immunosorbent assay for granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor, and the blocking studies with antibodies for these cytokines suggested that both the presence of direct contact between hematopoietic progenitor cells and human cutaneous fibroblast cell lines and macrophage colony-stimulating factor produced by human cutaneous fibroblast cell lines are required for their maximum growth and differentiation into CD1a+ dendritic cells, whereas macrophage colony-stimulating factor was solely responsible for their differentiation. These data suggest that cutaneous fibroblasts support the differentiation of dermal dendritic cells in addition to that of monocytes from hematopoietic progenitor cells by their direct contact with hematopoietic progenitor cells and by their macrophage colony-stimulating factor production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.0022-202x.2001.01692.x | DOI Listing |
Biomaterials
January 2025
Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:
Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada. Electronic address:
Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs).
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFCancer Lett
January 2025
. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:
Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!