Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic010760q | DOI Listing |
Dalton Trans
January 2025
School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
Five complexes of gallium derived from hydroxamic acids have been synthesised, characterised, and their anti-bacterial activity and mammalian cell toxicity established. These are three metal-organic complexes; [Ga(BPHA)] 1, [Ga(BHA-)] 2, [Ga(SHA-)(SHA-)] 3, and two heteroleptic organometallic complexes [GaMe(BPHA)] 4, and [GaMe(BHA-)] 5, along with the iron complex [Fe(BPHA)] 6 (BPHA-H = -benzoyl--phenylhydroxamic acid, BHA-H = phenylhydroxamic acid, and SHA-H = salicylhydroxamic acid). Solid-state structures of 1, 4-6 were identified by single-crystal X-ray crystallography.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
Osmotic stress, caused by the lack of water or by high salinity, is a common problem in plant roots. Osmotic stress can be reproducibly simulated with the application of solutions of the high-molecular-weight and impermeable polyethylene glycol. The accumulation of different reactive oxygen species, such as singlet oxygen, superoxide, and hydrogen peroxide, accompany this stress.
View Article and Find Full Text PDFPlant Dis
October 2024
Michigan State University, Department of Plant, Soil and Microbial Sciences, 105 CIPS, East Lansing, Michigan, United States, 48824;
Halo blight of hop, caused by Diaporthe humulicola, has increased in eastern North America since 2018. When left untreated, the disease can cause yield loss ranging from 17-56%. Currently, there are no fungicides registered for use on halo blight of hop.
View Article and Find Full Text PDFRSC Appl Polym
September 2024
Department of Biomedical Engineering, Michigan Technological University 1400 Townsend Drive Houghton Michigan 49931 USA
The feasibility of utilizing salicylhydroxamic acid (SHAM) as a new adhesive molecule for designing structural adhesives is investigated in this study. SHAM-containing polymers were prepared with a hydroxyethyl methacrylate (HEMA) or methoxyethyl acrylate (MEA) backbone and mixed with polyvinylidene fluoride (PVDF). PVDF was included to increase the cohesive property of the adhesive through hydrogen bond (H-bond) formation with the adhesive polymers.
View Article and Find Full Text PDFACS Mater Au
September 2024
Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
We report a new photoresist based on a multinuclear tin-based macrocyclic complex and its performance for extreme UV (EUV) photolithography. The new photoresist has a trinuclear macrocyclic structure containing three salicylhydroxamic acid ligands and six Sn-CH bonds, which was confirmed by multinuclear nuclear magnetic resonance (NMR) and FT-IR spectroscopies and single-crystal X-ray diffraction study. The resist exhibited good humidity, air, and thermal stabilities, while showing good photochemical reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!