A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EGb761 blocks MPP+-induced lipid peroxidation in mouse corpus striatum. | LitMetric

EGb761 blocks MPP+-induced lipid peroxidation in mouse corpus striatum.

Neurochem Res

Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez SS, México, DF, México.

Published: November 2001

EGb761 has been suggested to be an antioxidant and free radical scavenger. Excess generation of free radicals, leading to lipid peroxidation (LP), has been proposed to play a role in the damage to striatal neurons induced by 1-methyl-4-phenylpyridinium (MPP+). We investigated the effects of EGb761 pretreatment on MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 for 17 days at different doses (0.63, 1.25, 2.5, 5 or 10 mg/kg) followed by administration of MPP+, (0.18, 0.36 or 0.72 mg/kg). LP was analyzed in corpus striatum at 30 min, 1 h, 2 h and 24 h after MPP+ administration. Striatal dopamine content was analyzed by HPLC at the highest EGb761 dose at 2 h and 24 h after MPP+ administration. MPP+-induced LP was blocked (100%) by EGb761 (10 mg/kg). Pretreatment with EGb761 partially prevented (32%) the dopamine-depleting effect of MPP+ at 24 h. These results suggest that supplements of EGb761 may be effective at preventing MPP+-induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1013971524150DOI Listing

Publication Analysis

Top Keywords

egb761
8
lipid peroxidation
8
corpus striatum
8
mpp+ administration
8
mpp+
6
egb761 blocks
4
blocks mpp+-induced
4
mpp+-induced lipid
4
peroxidation mouse
4
mouse corpus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!