Parallel cascade recognition of exon and intron DNA sequences.

Ann Biomed Eng

Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada.

Published: January 2002

Many of the current procedures for detecting coding regions on human DNA sequences combine a number of individual techniques such as discriminant analysis and neural net methods. Recent papers have used techniques from nonlinear systems identification, in particular, parallel cascade identification (PCI), as one means for classifying protein sequences into their structure/function groups. In the present paper, PCI is used in a pilot study to distinguish exon (coding) from intron (noncoding; interspersed within genes) human DNA sequences. Only the first exon and first intron sequences with known boundaries in genomic DNA from the beta T-cell receptor locus were used for training. Then, the parallel cascade classifiers were able to achieve classification rates of about 89% on novel sequences in a test set, and averaged about 82% when results of a blind test were included. In testing over a much wider range of human nucleotide sequences, PCI classifiers averaged 83.6% correct classifications. These results indicate that parallel cascade classifiers may be useful components in future coding region detection programs.

Download full-text PDF

Source
http://dx.doi.org/10.1114/1.1433490DOI Listing

Publication Analysis

Top Keywords

parallel cascade
16
dna sequences
12
exon intron
8
human dna
8
cascade classifiers
8
sequences
7
parallel
4
cascade recognition
4
recognition exon
4
dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!