An immunochemical assay has been adapted to detect DNA damage in whole blood at biologically relevant doses of ionizing radiation. Upon alkaline treatment of whole blood, both strand breaks and base damage (which is converted into strand breaks by the addition of damage-specific enzymes) are detected by using antibodies that specifically bind to single-strand DNA. Single-strand breaks can be detected immediately after irradiation at doses as low as 0.2 Gy. With unknown background damage, the lower detection limit increased to approximately 0.5 Gy immediately after irradiation due to interindividual variation. Because single-strand breaks are repaired rapidly, this method is suitable only for blood collected less than 1 hour after exposure. Base damage represents a very promising biological indicator that can be used 1 hour and longer (at least to 4 hours) after radiation exposure because of an apparent lack of base damage repair during this time window.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFJ Adv Res
January 2025
Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China. Electronic address:
Introduction: Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention.
Objectives: To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE.
Methods: The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice.
DNA Repair (Amst)
January 2025
Department of Chemistry and Stanford University, Stanford, CA 94305, United States. Electronic address:
A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.
View Article and Find Full Text PDFIndian J Occup Environ Med
December 2024
Viral Research and Diagnostic Laboratory (VRDL), Government Medical College, Patiala, Punjab, India.
Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!