The CUO molecule, formed from the reaction of laser-ablated U atoms with CO in a noble gas, exhibits very different stretching frequencies in a solid argon matrix [804.3 and 852.5 wave numbers (cm(-1))] than in a solid neon matrix (872.2 and 1047.3 cm(-1)). Related experiments in a matrix consisting of 1% argon in neon suggest that the argon atoms are interacting directly with the CUO molecule. Relativistic density functional calculations predict that CUO can bind directly to one argon atom (U-Ar = 3.16 angstroms; binding energy = 3.2 kilocalories per mole), accompanied by a change in the ground state from a singlet to a triplet. Our experimental and theoretical results also suggest that multiple argon atoms can bind to a single CUO molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1069342DOI Listing

Publication Analysis

Top Keywords

cuo molecule
16
atoms noble
8
noble gas
8
argon atoms
8
cuo
5
argon
5
noble gas-actinide
4
gas-actinide compounds
4
compounds complexation
4
complexation cuo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!