A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TonB interacts with nonreceptor proteins in the outer membrane of Escherichia coli. | LitMetric

The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B(12) across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134908PMC
http://dx.doi.org/10.1128/JB.184.6.1640-1648.2002DOI Listing

Publication Analysis

Top Keywords

outer membrane
56
tonb outer
20
membrane
16
outer
15
tonb
14
membrane receptors
12
escherichia coli
8
cytoplasmic membrane
8
tonb interactions
8
interactions outer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!