Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC123766 | PMC |
http://dx.doi.org/10.1128/AEM.68.3.1220-1227.2002 | DOI Listing |
Pestic Biochem Physiol
November 2024
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:
Anal Chem
October 2024
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
The advancement of acetylcholinesterase (AChE) activity and its inhibitor assays is crucial for clinical diagnosis, drug screening, and environmental monitoring. A nanozyme-mediated cascade reaction system could offer promising prospects for a wide range of applications in such biosensing; however, the creation of nanozyme catalysts with diverse functionalities remains a significant challenge. Herein, we have proposed a multifunctional iron-doped polymer dots (Fe-PDs) nanozyme possessing excellent fluorescence and peroxidase (POD)-mimicking activity.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China. Electronic address:
Microbiol Spectr
August 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
CSV86 displays the unique property of preferential utilization of aromatic compounds over simple carbon sources like glucose and glycerol and their co-metabolism with organic acids. Well-characterized growth conditions, aromatic compound metabolic pathways and their regulation, genome sequence, and advantageous eco-physiological traits (indole acetic acid production, alginate production, fusaric acid resistance, organic sulfur utilization, and siderophore production) make it an ideal host for metabolic engineering. Strain CSV86 was engineered for Carbaryl (1-naphthyl--methylcarbamate) degradation via salicylate-catechol route by expression of a Carbaryl hydrolase (CH) and a 1-naphthol 2-hydroxylase (1NH).
View Article and Find Full Text PDFInorg Chem
January 2024
College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China.
A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!