Purpose: To improve an online portal imaging system such that implanted cylindrical gold markers of small diameter (no more than 1.0 mm) can be visualized. These small markers would make the implantation procedure much less traumatic for the patient than the large markers (1.6 mm in diameter), which are usually used today to monitor prostate interfraction motion during radiation therapy.

Methods And Materials: Several changes have been made to a mirror-video based online imaging system to improve image quality. First, the conventional camera tube was replaced by an avalanche-multiplication-based video tube. This new camera tube has very high gain at the target such that the camera noise, which is one of the main causes of image degradation of online portal imaging systems, was overcome and effectively eliminated. Second, the conventional linear-accelerator (linac) target was replaced with a low atomic number (low-Z) target such that more diagnostic X-rays are present in the megavoltage X-ray beam. Third, the copper plate buildup layer for the phosphor screen was replaced by a thin plastic layer for detection of the diagnostic X-ray components in the beam generated by the low-Z target.

Results: Radiopaque fiducial gold markers of different sizes, i.e., 1.0 mm (diameter) x 5 mm (length) and 0.8 mm (diameter) x 3 mm (length), embedded in an Alderson Rando phantom, can be clearly seen on the images acquired with our improved system. These markers could not be seen on images obtained with any commercial system available in our clinic.

Conclusion: This work demonstrates the visibility of small-diameter radiopaque markers with an improved online portal imaging system. These markers can be easily implanted into the prostate and used to monitor the interfraction motion of the prostate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0360-3016(01)02709-2DOI Listing

Publication Analysis

Top Keywords

imaging system
16
online portal
12
portal imaging
12
markers
8
radiopaque markers
8
improved online
8
online imaging
8
gold markers
8
interfraction motion
8
camera tube
8

Similar Publications

The evolution of radiation therapy in Uganda has been a journey marked by significant milestones and persistent challenges. Since the inception of radiotherapy services in 1988-1989, there has been a concerted effort to enhance cancer treatment services. The early years were characterized by foundational developments, such as the installation of the first teletherapy units, low-dose-rate brachytherapy units, and conventional simulators, and the recognition of radiation oncologists and medical physicist professionals laid the groundwork for radiotherapy treatment modalities.

View Article and Find Full Text PDF

A Quantitative First Passage Time Model for Tubular Microfluidic Immunoassays.

ACS Sens

January 2025

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.

View Article and Find Full Text PDF

Background And Objective: Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) has revolutionized ablative treatment of essential tremor in recent years. However, limitations in precision targeting may account for suboptimal efficacy and significant side effects. We describe a simple intraprocedural three-dimensional image-guided lesion shaping technique that can improve overall outcomes of MRgFUS for essential tremor and facilitate expansion to novel indications.

View Article and Find Full Text PDF

Background And Objectives: A typical workflow for deep brain stimulation (DBS) surgery consists of head frame placement, followed by stereotactic computed tomography (CT) or MRI before surgical implantation of the hardware. At some institutions, this workflow is prolonged when the imaging scanner is located far away from the operating room, thereby increasing workflow times by the addition of transport times. Recently, the intraoperative O-arm has been shown to provide accurate image fusion with preoperative CT or MR imaging, suggesting the possibility of obtaining an intraoperative localization scan and postoperative confirmation.

View Article and Find Full Text PDF

Case: We present the case of a 24-year-old woman who sustained a left midshaft clavicle fracture with acute subclavian artery compression, subclavian vein laceration, and complete brachial plexus palsy after a motor vehicle collision. The patient underwent urgent open reduction internal fixation of the clavicle and repair of the subclavian vein. Two years later, she underwent opponensplasty and flexor digitorum profundus tendon transfers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!