A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low molecular mass dinitrosyl nonheme-iron complexes up-regulate noradrenaline release in the rat tail artery. | LitMetric

Low molecular mass dinitrosyl nonheme-iron complexes up-regulate noradrenaline release in the rat tail artery.

BMC Pharmacol

Pharmacologie et Physicochimie des Interactions Cellulaires et Moléculaires, CNRS, UMR 7034, Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.

Published: December 2003

Background: Dinitrosyl nonheme-iron complexes can appear in cells and tissues overproducing nitric oxide. It is believed that due to their chemical nature these species may be implicated in certain pathophysiological events. We studied the possible role of low molecular mass dinitrosyl iron complexes in the control of noradrenaline release in electrically stimulated rat tail artery.

Results: A model complex, dinitrosyl-iron-thiosulfate (at 1-10 microM) produced a concentration-dependent enhancement of electrical field stimulated [3H]noradrenaline release (up to 2 fold). At the same time, dinitrosyl-iron-thiosulfate inhibited neurogenic vasoconstriction, consistent with its nitric oxide donor properties. A specific inhibitor of cyclic GMP dependent protein kinase, Rp-8pCPT-cGMPS, partially inhibited the effect of dinitrosyl-iron-thiosulfate on neurogenic vasoconstriction, but not on [3H]noradrenaline release. Another model complex, dinitrosyl-iron-cysteine (at 3 microM) elicited similar responses as dinitrosyl-iron-thiosulfate. Conventional NO and NO+ donors such as sodium nitroprusside, S-nitroso-L-cysteine or S-nitroso-glutathione (at 10 microM) had no effect on [3H]noradrenaline release, though they potently decreased electrically-induced vasoconstriction. The "false complex", iron(II)-thiosulfate showed no activity.

Conclusions: Low molecular mass iron dinitrosyl complexes can up-regulate the stimulation-evoked release of vascular [3H]noradrenaline, apparently independently of their NO donor properties. This finding may have important implications in inflammatory tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC65697PMC
http://dx.doi.org/10.1186/1471-2210-2-3DOI Listing

Publication Analysis

Top Keywords

low molecular
12
molecular mass
12
[3h]noradrenaline release
12
mass dinitrosyl
8
dinitrosyl nonheme-iron
8
nonheme-iron complexes
8
complexes up-regulate
8
noradrenaline release
8
rat tail
8
nitric oxide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!