Tertiary 1,1-dimethyl-4-alkenyl chloride (1) solvolyzes with significantly reduced secondary beta-deuterium kinetic isotope effect (substrate with two trideuteromethyl groups) and has a lower entropy and enthalpy of activation than the referent saturated analogue 4 (k(H)/k(D) = 1.30 +/- 0.03 vs k(H)/k(D) = 1.79 +/- 0.01; Delta Delta H(++) = -9 kJ mol(-1), Delta Delta S(++) = -36 J mol(-1) K(-1), in 80% v/v aqueous ethanol), indicating participation of the double bond in the rate-determining step. Transition structure 1-TS computed at the MP2(fc)/6-31G(d) level of theory revealed that the reaction proceeds through a late transition state with considerably pronounced double bond participation and a substantially cleaved C-Cl bond. The doubly unsaturated compound 3 (1,1-dimethyl-4,8-alkadienyl chloride) solvolyzes with further reduction of the isotope effect, and a drastically lower entropy of activation (k(H)/k(D) = 1.14 +/- 0.01; DeltaS(++) = -152 +/- 12 J mol(-1) K(-1), in 80% v/v aqueous ethanol), suggesting that the solvolysis of 3 proceeds by way of extended pi-participation, i.e., the assistance of both double bonds in the rate-determining step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0107608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!