Thirty subfornical organ (SFO) neurons in normotensive Wistar-Kyoto (WKY) rats and 32 SFO neurons in spontaneously hypertensive rats (SHR) were antidromically activated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN) under urethane anesthesia. The spontaneous firing rate was significantly higher in SHR than in WKY rats. No significant differences in the latency, conduction velocity, and threshold of antidromic response were observed between WKY and SHR. All the identified SFO units were tested for a response to intracarotid injection of angiotensin II (ANG II, 20-ng/kg b.w.t.). Injections of ANG II elicited an increase in the activity of 21 units in WKY and 20 units in SHR and a depression in the firing of one unit in WKY rats, but did not affect the remaining units. The magnitude of the excitatory response caused by the ANG II injection was much greater in SHR than in WKY rats. These results show that there are differences between WKY and SHR in the spontaneous discharge rate of SFO neurons projecting to the PVN and in their response to circulating ANG II.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1566-0702(01)00388-5 | DOI Listing |
Brain Res Bull
December 2024
Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:
Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China. Electronic address:
Depression is underpinned by a complex pathogenesis that involves the hippocampus and dorsal raphe nucleus (DRN) of the central nervous system. Although electroacupuncture (EA) is proven to be safe and effective for alleviating depression symptoms and causes minimal side effects its underlying therapeutic mechanism remains unclear. In this study, we performed targeted metabolomics to identify metabolite alterations in the hippocampus and DRN of Wistar Kyoto (WKY) rats and elucidate the role and potential mechanism of action of EA.
View Article and Find Full Text PDFAcute electrical stimulation of the common peroneal nerve (cPNS) has been shown to cause an immediate reduction in systolic blood pressure (SBP) in spontaneous hypertense rats (SHR), but the effect of this treatment in sub-chronic ambulatory SBP is unknown. Here we developed an implantable wireless WNClip neural stimulator to test the efficacy of 5-week cPNS as a treatment for hypertension. Daily cPNS 2 Hz monophasic stimulation at threshold for 8 minutes every day for five weeks, reduced SBP in WKY animals by -4 mm Hg, and in SHR animals by -21 mmHg in week 5 (p < 0.
View Article and Find Full Text PDFMetab Brain Dis
December 2024
Department of Neurology, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, 201613, Shanghai, China.
We used spontaneously hypertensive rats (SHR) as a hypertensive cerebral small vessel disease (CSVD) model to quantify blood-brain barrier (BBB) disruption by 11.7TMR T1mapping and to investigate white matter lesions and microangiopathy in CSVD. Male SHR were used as a hypertensive CSVD animal model and normotensive Wistar-Kyoto rats (WKY) were used as a control model.
View Article and Find Full Text PDFObesity (Silver Spring)
January 2025
Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Objective: Adenylate cyclase 3 (Adcy3) has been linked to both obesity and major depressive disorder. We identified a protein-coding variant in the transmembrane (TM) helix of Adcy3 in rats; similar obesity variants have been identified in humans. This study investigates the role of a TM variant in adiposity and behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!