DNA fingerprinting of sister blastomeres from human IVF embryos.

Hum Reprod

Centre for Early Human Development, Monash Institute of Reproduction and Development, Monash University, Level 3, 27-31 Wright Street, Clayton 3168, Victoria, Australia.

Published: March 2002

Background: Previously published single cell DNA fingerprinting systems have been plagued by high rates of allele drop-out (ADO) and preferential amplification (PA) preventing clinical application in preimplantation genetic diagnosis.

Methods: Tetranucleotide microsatellite markers with high heterozygosity, known allelic size ranges and minimal PCR stutter artefacts were selected for chromosomes X, 13, 18 and 21 and optimized in a multiplex fluorescent (FL)-PCR format. FL-PCR products were analysed using the ABI Prism 377 DNA sequenator and Genescan software. Validation of the DNA fingerprinting system was performed on single diploid (n = 50) and aneuploid (n = 25) buccal cells and embryonic blastomeres (n = 21).

Results: The optimized pentaplex PCR DNA fingerprinting system displayed a high proportion of successful amplifications (>91%) and low ADO and PA (<6%) when assessed on 50 human buccal cells. DNA fingerprints of single cells from a subject with Down's syndrome detected the expected tri-allelic pattern for the chromosome 21 marker, confirming trisomy 21. In a blind study on 21 single blastomeres, all embryos were identifiable by their unique DNA fingerprints and shared parental alleles.

Conclusions: A highly specific multiplex FL-PCR based on the amplification of five highly polymorphic microsatellite markers was developed for single cells. This finding paves the way for the development of a more complex PCR DNA fingerprinting system to assess aneuploidy and single gene mutations in IVF embryos from couples at genetic risk.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/17.3.752DOI Listing

Publication Analysis

Top Keywords

dna fingerprinting
16
fingerprinting system
8
dna
5
fingerprinting sister
4
sister blastomeres
4
blastomeres human
4
human ivf
4
ivf embryos
4
embryos background
4
background published
4

Similar Publications

Microsatellite/SSR dataset: characterization of apple cultivars of the German Fruit Genebank.

Sci Data

January 2025

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden-Pillnitz, Germany.

The German Fruit Genebank is a decentralized network focused on coordinating various germplasm collections across Germany to conserve and utilize the genetic resources of native fruit species. This aim emphasizes the necessity of trueness-to-type validation of genetic resources based on pomological and molecular characteristics. Between 2009 and 2021, multiple projects were undertaken to create an inventory of the apple (Malus ssp.

View Article and Find Full Text PDF

In 2021, the Indian Undiagnosed Diseases Program was initiated for patients without a definite diagnosis despite extensive evaluation in four participating sites. Between February 2021 and March 2023, a total of 88 patients were recruited and underwent deep phenotyping. A uniform methodology for data re-analysis was implemented as the first step prior to conducting additional genomic testing.

View Article and Find Full Text PDF

3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study.

Int J Biol Macromol

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:

Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.

View Article and Find Full Text PDF

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.

Am J Hum Genet

January 2025

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Staphylococcus epidermidis (S. epidermidis) live in different human locations and natural environments. For ribotyping S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!