The development of hemoglobin-based oxygen carriers has been propagated for replacement of the oxygen carrying properties of red blood cells for almost one century. Using a Clark-type multi-wire oxygen surface electrode and the dorsal skin fold chamber model of the awake Syrian golden hamster, local tissue pO(2) was analyzed in the thin striated skin muscle before and after administration of an ultra-purified polymerized bovine hemoglobin solution (U-PBHb, Biopure Corp., Boston, Mass., USA) under the following experimental conditions: (a) hypervolemic infusion with U-PBHb at approximately 10% of calculated blood volume, and (b) isovolemic exchange transfusion with U-PBHb by replacing approximately 50% of calculated blood volume. Control animals of group a received equivalent treatment with either isotonic saline or dextran 60, control animals of group b received dextran 60. Local tissue pO(2) was found slightly decreased after both hypervolemic infusion and isovolemic exchange transfusion with U-PBHb, while frequency distribution curves of local tissue pO(2) were found more narrow (less values <10 mm Hg and >25 mm Hg), suggesting a more homogeneous tissue pO(2) distribution. The data thus indicate that U-PBHb slightly decreases mean tissue pO(2) after both hypervolemic infusion and isovolemic exchange transfusion which is accompanied by an effective homogenization of local tissue pO(2) distribution as compared to dextran 60.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000048896 | DOI Listing |
Undersea Hyperb Med
January 2025
Hyperbaric and Tissue Viability Unit, Gozo General Hospital, Malta.
Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery.
View Article and Find Full Text PDFIntroduction Chronic obstructive pulmonary disease (COPD) is a significant contributor to global morbidity and mortality. Despite well-established management protocols, treatment remains suboptimal due to high costs and mortality rates. This study aims to compare the impact of initial oxygenation status, Dyspnea, Eosinopenia, Consolidation, Acidemia, and Atrial Fibrillation (DECAF), and National Early Warning Score 2 (NEWS2) scores on management outcomes in COPD patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, PL-04-141, Warsaw, Poland.
Hypoxia, a condition of oxygen tension lower than physiological level, plays a crucial role in shaping the tumor microenvironment and modulates distinct cell populations activity. The tumor suppressor PTEN regulates angiogenesis, a process involving endothelial cells (ECs). Pathological in tumors, it is crucial for growth.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!