Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.

Proc Natl Acad Sci U S A

Department of Biology and Center for Cancer Research, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Published: March 2002

The p53 tumor suppressor gene is the most frequently mutated gene in human cancers, and germ-line p53 mutations cause a familial predisposition for cancer. Germ-line or sporadic p53 mutations are usually missense and typically affect the central DNA-binding domain of the protein. Because p53 functions as a tetrameric transcription factor, mutant p53 is thought to inhibit the function of wild-type p53 protein. Here, we studied the possible dominant-negative inhibition of wild-type p53 protein by two different, frequently occurring point mutations. The R270H and P275S mutations were targeted into the genome of mouse embryonic stem cells to allow the analysis of the effects of the mutant proteins expressed in normal cells at single-copy levels. In embryonic stem cells, the presence of a heterozygous point-mutated allele resulted in delayed transcriptional activation of several p53 downstream target genes on exposure to gamma irradiation. Doxorubicin-induced apoptosis was severely affected in the mutant embryonic stem cells compared with wild-type cells. Heterozygous mutant thymocytes had a severe defect in p53-dependent apoptotic pathways after treatment with gamma irradiation or doxorubicin, whereas p53-independent apoptotic pathways were intact. Together these data demonstrate that physiological expression of point-mutated p53 can strongly limit overall cellular p53 function, supporting the dominant-negative action of such mutants. Also, cells heterozygous for such mutations may be compromised in terms of tumor suppression and response to chemotherapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122453PMC
http://dx.doi.org/10.1073/pnas.052713099DOI Listing

Publication Analysis

Top Keywords

p53
12
wild-type p53
12
embryonic stem
12
stem cells
12
point mutations
8
dominant-negative inhibition
8
inhibition wild-type
8
p53 function
8
p53 mutations
8
p53 protein
8

Similar Publications

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

Molecular analysis of HPV16 and HPV18 oncogenes in oral squamous cell carcinoma: Structural, transcriptomic and insights.

Oncol Lett

March 2025

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.

The present study investigated the involvement of human papillomavirus (HPV)16 and HPV18 in oropharyngeal malignancies in order to understand the oncogenic mechanisms, and to identify biomarkers for early detection and treatment targets. Given the rising incidence of HPV-associated cancer, particularly in India, this holds significance in elucidating the molecular basis of these diseases. Structural validation of HPV16 and 18 oncoproteins E6 and E7 was conducted using computational tools, while gene expression profiles related to oral squamous cell carcinoma (OSCC) were analyzed to assess differential expression.

View Article and Find Full Text PDF

Introduction: In recent years, there has been a rise in the incidence of renal cell carcinoma (RCC), with metastatic RCC being a prevalent and significant contributor to mortality. While a regulatory role for microRNAs (miRNAs) in the development and progression of RCC has been recognized, their precise functions, molecular mechanisms, and potential clinical implications remain inadequately elucidated. Hence, this study aimed to explore the role of miR-507 in RCC and identify STEAP3 as a downstream target of miR-507.

View Article and Find Full Text PDF

Network Pharmacology Unveils Multi-Systemic Intervention of Panax notoginseng in Osteoporosis via Key Genes and Signaling Pathways.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedics, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong Province, People's Republic of China.

Background: Panax notoginseng (Burk.) F. H.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!