To obtain information on Ca(2+)-induced tropomyosin (Tm) movement in Ca(2+)-regulated muscle thin filaments, frequency-domain fluorescence energy transfer data were collected between 5-(2-iodoacetyl-amino-ethyl-amino)naphthalene-1-sulfonic acid at Cys-190 of Tm and phalloidin-tetramethylrhodamine B isothiocyanate bound to F-actin. Two models were used to fit the experimental data: an atomic coordinate (AC) model coupled with a search algorithm that varies the position and orientation of Tm on F-actin, and a double Gaussian distance distribution (DD) model. The AC model showed that little or no change in transfer efficiency is to be expected between different sites on F-actin and Tm if Ca(2+) causes azimuthal movement of Tm of the magnitude suggested by structural data (C. Xu, R. Craig, L. Tobacman, R. Horowitz, and W. Lehman. 1999. Biophys. J. 77:985-992). However, Ca(2+) produced a small but significant change in our phase/modulation versus frequency data, showing that changes in lifetime decay can be detected even when a change of the steady-state transfer efficiency is very small. A change in Tm azimuthal position of 17 on the actin filament obtained with the AC model indicates that solution data are in reasonable agreement with EM image reconstruction data. In addition, the data indicate that Tm also appears to rotate about its axis, resulting in a rolling motion over the F-actin surface. The DD model showed that the distance from one of the two chains of Tm to F-actin was mainly affected, further verifying that Ca(2+) causes Tm to roll over the F-actin surface. The width of the distance distributions indicated that the position of Tm in absence and in presence of Ca(2+) is well defined with appreciable local flexibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301952 | PMC |
http://dx.doi.org/10.1016/S0006-3495(02)75505-7 | DOI Listing |
Clin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, The Netherlands.
Purpose: Cysticercosis, caused by Taenia solium larvae, can affect various ocular and extraocular structures, leading to significant morbidity. Ultrasound B-scan imaging plays a pivotal role in diagnosing and classifying cysticercosis lesions. The aim of the study was to describe the ultrasound B-scan characteristics of ocular and extraocular cysticercosis, proposing a classification system based on anatomical localization to enhance understanding and management.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine.
View Article and Find Full Text PDFFront Robot AI
January 2025
School of Engineering, Institute of Science Tokyo, Tokyo, Japan.
Animal muscles have complex, three-dimensional structures with fibers oriented in various directions. The tongue, in particular, features a highly intricate muscular system composed of four intrinsic muscles and several types of extrinsic muscles, enabling flexible and diverse movements essential for feeding, swallowing, and speech production. Replicating these structures could lead to the development of multifunctional manipulators and advanced platforms for studying muscle-motion relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!