Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301940 | PMC |
http://dx.doi.org/10.1016/S0006-3495(02)75493-3 | DOI Listing |
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Brain Spine
December 2024
Department of Neurosurgery, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany.
Introduction: Breathing-synchronized hypoglossal-nerve stimulation is a treatment option for suitable patients with severe obstructive-sleep-apnoea. The classical implantation technique requires three incisions: submental to place the stimulating-electrode on terminal branches of the hypoglossal-nerve, sub-clavicular to place the impulse generator, and on the lateral chest-wall to place a breathing-sensor lead. A two-incision-technique has been propagated and widely adopted whereby the respiratory-sensing-lead is placed deeper to the IPG-pocket.
View Article and Find Full Text PDFActa Endocrinol (Buchar)
January 2025
All India Institute of Medical Science, Department of Pathology & Lab Medicine, Mangalagiri, Guntur, India.
Unlabelled: Urinary Bladder paraganglioma accounts for 0.06% of all bladder tumors and 1% of all pheochromocytoma. Most tumors are localized at the dome or trigone and are unifocal.
View Article and Find Full Text PDFArch Plast Surg
January 2025
Division of Plastic and Maxillofacial Surgery, Department of Surgery, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Posterior Component Separation (PCS) is a surgical technique used in abdominal wall reconstruction. Understanding the relationship between the rectus abdominis and transversus abdominis muscles and the location of intercostal nerves is crucial for minimizing nerve injury during PCS. This cadaveric study aimed to investigate these anatomical relationships and propose practical guidelines for safer PCS procedures.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!