A molecular chaperone prefoldin/GimC from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 was characterized. Pyrococcus prefoldin protected porcine heart citrate synthase from thermal aggregation whereas each subunit alone afforded little protection. It also arrested the spontaneous refolding of acid-denatured green fluorescent protein and then transferred it not only to a group II chaperonin from the hyperthermophilic archaeum Thermococcus sp. strain KS-1, but also to a group I chaperonin from the thermophilic bacterium Thermus thermophilus HB8 for subsequent ATP dependent refolding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.2002.6523 | DOI Listing |
Biomol NMR Assign
October 2021
Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France.
Prefoldin is a heterohexameric protein assembly which acts as a co-chaperonin for the well conserved Hsp60 chaperonin, present in archaebacteria and the eukaryotic cell cytosol. Prefoldin is a holdase, capturing client proteins and subsequently transferring them to the Hsp60 chamber for refolding. The chaperonin family is implicated in the early stages of protein folding and plays an important role in proteostasis in the cytosol.
View Article and Find Full Text PDFJ Biomol Struct Dyn
May 2022
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
Prefoldin (PFD) is a heterohexameric molecular chaperone which bind unfolded proteins and subsequently deliver them to a group II chaperonin for correct folding. Although there is structural and functional information available for humans and archaea PFDs, their existence and functions in malaria parasite remains uncharacterized. In the present review, we have collected the available information on prefoldin family members of archaea and humans and attempted to analyze unexplored PFD subunits of ().
View Article and Find Full Text PDFBiomater Sci
April 2019
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
Here we report a novel aspect of molecular chaperone prefoldin (PFD) as a biomaterial in the biocatalytic synthesis of gold nanoparticles (AuNPs) using glycerol dehydrogenase (GLD). We found that PFD could inhibit the aggregation of AuNPs during the biosynthesis, leading to the formation of AuNPs with controlled size distribution.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2017
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Aminoglycoside antibiotics affect protein translation fidelity and lead to protein aggregation and an increase in intracellular oxidative stress level as well. The overexpression of the chaperonin GroEL/GroES system promotes short-term tolerance to aminoglycosides in Escherichia coli. Here, we demonstrated that the coexpression of prefoldin or Hsp60 originating from the hyperthermophilic archaeon Pyrococcus furiosus in E.
View Article and Find Full Text PDFCell Stress Chaperones
May 2016
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!