In a 19-year-old patient with status epilepticus arising in the right parietal neocortex, unenhanced ictal MRI showed abnormalities mainly in the right cerebral cortex, contralateral cerebellum, and ipsilateral thalamus. The thalamus is considered a key site of functional abnormality in this patient.

Download full-text PDF

Source
http://dx.doi.org/10.1212/wnl.58.4.641DOI Listing

Publication Analysis

Top Keywords

ipsilateral thalamic
4
thalamic mri
4
mri abnormality
4
abnormality epilepsy
4
epilepsy patient
4
patient 19-year-old
4
19-year-old patient
4
patient status
4
status epilepticus
4
epilepticus arising
4

Similar Publications

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Thalamo-insular cortex connections in the rat and human.

Neurosci Lett

December 2024

Department of Anatomy, Koç University, School of Medicine, Istanbul, Turkey. Electronic address:

The insular cortex (ICx) has a role in large a variety of functions. Thalamus plays an important role in modulating cortical functions. The present study aims to show thalamic-ICx connections using the fluoro-gold (FG) tracing method in rats and diffusion tensoring-based tractography (DTI) in humans.

View Article and Find Full Text PDF

Progressive brain atrophy and cortical reorganization related to surgery in temporal lobe epilepsy.

Ann Clin Transl Neurol

December 2024

Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Objective: Epilepsy is associated with progressive cortical atrophy exceeding normal aging. We aimed to explore longitudinal cortical alterations in patients with temporal lobe epilepsy (TLE) and distinct surgery outcomes.

Methods: We obtained longitudinal T1-weighted MRI data in a well-designed cohort, including 53 operative TLE patients, 23 nonoperative TLE patients, and 23 healthy controls.

View Article and Find Full Text PDF

Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function.

J Neurosci Res

December 2024

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China.

Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!